搜索资源列表
algebra
- 现代通信控制理论,该代码详细介绍如何用matlab源程序来判断系统的稳定性与否
crc32源码及资料
- CRC校验采用多项式编码方法。多项式乘除法运算过程与普通代数多项式的乘除法相同。多项式的加减法运算以2为模,加减时不进,错位,如同逻辑异或运算。-CRC polynomial used coding method. Polynomial multiply and divide computing process and the general polynomial algebra multiply and divide the same. Polynomial and subtract oper
signalProcessingBasedOnMultilinearAlgebra
- signal processing based on multilinear algebra,国外的学者的博士论文,主题关于信号处理最前沿的课题之一:平行因子分解(PARAFAC)。主要讨论了多重线性代数,包括高阶统计量分析,高阶奇异值分解,最优秩1分解,ICA与PARAFAC之间的关系等等。-signal processing based on multilinear algebra, foreign doctoral dissertations and scholars, the subje
Digital_circuit_and_the_operation_rules_of_algebra
- 数字电路逻辑代数及运算规则Digital circuit and the operation rules of algebra-Digital circuit operation rules of algebra and Digital circuit and the operation rules of algebra
5
- This book is intended for beginners. The book follows the style of other programming texts in the Schaum s Outline Series (the first of which, published in 1975, was my own Programming with Basic). As such, it is written in a manner that can easily
linear
- 应用于线性代数计算的小程序,C语言编程。可进行行列式计算、代数余子式值、矩阵的加减乘除、求逆、求秩等计算-Applied linear algebra applets, C language programming. Determinant can be calculated, the value of algebraic, matrix addition and subtraction, multiplication and division, inverse, rank, etc. dema
Chapter3
- matrix algebra covers matrix addition subtraction transpose multiplication and so on.
111
- 自入射Nakayama代数的Hochschild上同调群.-Since the incident Nakayama algebra of Hochschild cohomology group.
Introduction-_FPGA_mid1
- fpga的中级教程,中级1_逻辑代数基础,请认真学习-fpga intermediate tutorial, intermediate algebra 1_ logical basis, carefully study
cblas
- CBLAS是BLAS的C语言接口。BLAS的全称是Basic Linear Algebra Subprograms,中文大概可以叫做基础线性代数子程序。主要是用于向量和矩阵计算的高性能数学库。本身BLAS是用Fortran写的,为了方便C/C++程序的使用,就有了BLAS的C接口库CBLAS。BLAS的主页是http://www.netlib.org/blas/,CBLAS的下载地址也可以在这个页面上找到。-Things quickly turn out that the BLAS(Basic
chpt5
- This presentation discusses BCH codes which are a certain type of error correction codes that is extensively used in Digital Communications. The understanding of BCH codes and its generation requires a good background in abstract algebra and polynomi
BooleanWithKey -FourVar
- boolean algebra calculator using Quine McCluskey on LPC2148.