搜索资源列表
Laplace
- laplace tranforms on C6416
sharp
- 数字图像的锐化DSP程序,LAPLACE算子程序在DSP5509上运行-DSP digital image sharpening process, LAPLACE operator subroutines run in the DSP5509
IntroductiontoRobotControl
- 机器人运动与控制 控制的思考方法 拉普拉斯变换与传递函数 稳定性判别-Control of robot motion and control methods of thinking Laplace transform and transfer function of the stability of discriminant
Laplace
- laplace transform text
Laplace
- 弄清楚Laplace分布形式,可以帮助我们理解Laplace分布的深刻含义-Clarify the form of Laplace distribution can help us understand the profound meaning of Laplace distribution
Control
- 自动控制原理,傅里叶变换到拉普拉斯变换的内容,自学者很好的学习资料。-Control theory, Fourier transform to Laplace transform the content, self-learners a good learning materials.
SEED403_LaplacianEdge
- 基于DSPDM642的边缘检测代码。检测算法为拉普拉斯算子。包含DSP的所有工程文件-Edge detection based on DSPDM642 code. Detection algorithm for the Laplace operator. DSP project file that contains all
DM642_LapLacianEdge
- TI DSP DM642下对图像做拉普拉斯边缘检测的使用实例,有很强的参考价值 -TI s DSP the DM642 image example of the use of the Laplace edge detection, there is a strong reference value
ImageEdgeDetec
- 基于SystemGenerator的图像边缘检测,分别有三种检测模式Sobel,Laplace以及Gauss—Laplace算子方式。成功在XilinxFPGA上验证,附带网表。-Three detection modes Sobel, Laplace and Gauss-Laplace operator image edge detection based on SystemGenerator. Success in XilinxFPGA verify with netlist.
laplace-random-distribution
- 产生laplace分布随机数的C语言程序-laplace distribution random number C Programming Language
SEED306_LaplacianSharp
- 基于DM642的图像锐化(拉普拉斯锐化)的实现-DM642 image sharpening (Laplace sharpening) based implementation
image_fuse
- 该代码完成基于拉普拉斯四层分解的图像融合算法,采用C语言,可用于嵌入式linux系统的开发环境下。-The code is based on the Laplace four complete decomposition of image fusion algorithm, using C language can be used in embedded linux system development environment.
vmd642_video_out0_LapLacianEdge
- 基于DM642的拉普拉斯边缘检测算法源码-Laplace edge detection algorithm based on DM642 is the source code
OpenCV
- OpenCV examples. Include examples like create an histrogram, use Laplace Filter and others
Laplace_using_finite_diff
- Laplace equation using finite difference method
pid-controller-report
- The Laplace transform is an integral transform perhaps second only to the Fourier transform in its utility in solving physical problems. The Laplace transform is particularly useful in solving linear ordinary differential equations such as those aris