搜索资源列表
人脸图像
- 一个可用于人脸识别的人脸库-a face recognition can be used for the Face
MDIP
- 基于UMIST人脸数据库的MDIP算法源码,包括相应源代码及所用的人脸库。 -Based on the UMIST face database MDIP algorithm source code, including the corresponding source code and libraries used by the human face.
att_faces
- 人脸库做人脸识别用的好东西 里面是灰度图片 每个人十张头像 是 pgm格式-In face of the repository for face recognition
DMMC
- DMMC算法在JAFFE 30*180训练与测试集下的人脸识别算法,其中包括源代码及所用的人脸库。-DMMC algorithm JAFFE 30* 180, under the training and test set of face recognition algorithms, including source code and libraries used by the human face.
pca2D
- 一个基于pca2D的人脸识别分类程序, 并包含完整的FACE-ORL人脸库,很具有研究和学习价值-Pca2D based on face recognition classification procedures, and includes the complete FACE-ORL face database, it is with research and learning the value of
face_recognition
- 基于PCA(pricipal component analysis)算法的人脸识别程序,用matlab编写,使用前需载入人脸库-Based on the PCA (pricipal component analysis) algorithm for face recognition process, using matlab to prepare, use before loading face database
pcaFISHER
- PCA+Fisher人脸识别,已在ORL人脸库上测试,效果不错-face recognition,including PCA and Fisher methods.
KFDA
- 此实验使用核Fisher鉴别分析(KFDA)方法在ORL人脸数据库上进行人脸识别试验。ORL标准人脸库共包含40人,每人10幅共400幅BMP图像。-This experiment the use of nuclear Fisher discriminant analysis (KFDA) method on ORL face database for face recognition test. Standard ORL face database contains a total of 40
PCA
- PCA 主成分分析在人脸识别中的应用 基于主成分分析理论对不同人脸库进行学习 总结“经验”并将“经验”用于对人脸的识别中-PCA Principal Component Analysis for Face Recognition Based on principal component analysis theory of different learning face database summary of " experience" and " experience
orl_faces
- orl人脸库,40个人,每人10幅图像。-orl face database, 40 individuals, 10 images per person.
FaceDec
- 人脸识别的程序,内有附带的识别照片的人脸库,可运行程序-face detection
UDLPP
- 人脸识别的UDLPP算法程序,包括基本源码及人所用的人脸库,MATlab环境下实现。-Face recognition algorithms UDLPP procedures, including the basic source and human face database used, MATlab environment to achieve.
UMLPP
- UMLPP算法在人脸识别上的应用源代码,包括源码及所用人脸库。-UMLPP algorithm in the application of face recognition on the source code, including source code and the employer face database.
ULPP-ICCS
- ULPP-ICCS算法在人脸识别上的应用源代码,基于UMIST人脸库训练与识别,包括源码及相应人脸库-ULPP-ICCS algorithm in the application of face recognition source code, based on the UMIST face database training and recognition, including the source and the corresponding face database
Yale
- 这是著名的人脸库,可以对人脸识别算法进行测试,该人脸库是被广泛使用的人脸库之一。-This is a well-known face database, face recognition algorithms can be tested in the face database is widely used as one face database.
yalefaces
- Yale人脸库(美国): 耶鲁大学,15人,每人11张照片,主要包括光照条件的变化,表情的变化等。-Yale Face Database (U.S.): Yale University, 15 people, each 11 photos, mainly including changes in lighting conditions, expressions of the change.
20064817924orl_faces_112x92
- ORL人脸图像库,共40人,每人10幅图像,其中每人的前5幅作为训练样本,后5幅作为测试分类样本,统计正确分类率。分类准则为最近邻规则。 真实的图像尺寸为112x92,列向量堆积对应人脸库矩阵的每一列。 -ORL face image database, a total of 40 per 10 images, each of which the first five as training samples, after the 5 categories as a test sampl
3DFaceRecognitionBasedon3DLBPandKernelDiscriminant
- 二维照片的人脸识别对光照、姿态和化妆等因素很敏感,故提出了一种将三维局部二值模式(3DLBP)和核享,1剐分析(KDA)相结合的三维人脸识剐方法.采用3DLBP描述人脸深度图像的特征,高斯核函数KDA 作为分类器,使用Chi平方统计改进高斯核函数、采用FRGC v2.0中2003春季采集的三维人脸库进行实验.实验结果表明,该 方法在每人2个训练样本时,识别率为91.8%,而PCA和3DLBP的识别率分别为60.4%和78.3%;当每人的训练样本数增至6个时,识别率为98.4%,而PCA和3D
耶鲁人脸库
- 耶鲁人脸库,共40个人,每个人10张图片,共400张图片。很全,用于人脸识别
ORL人脸数据库
- ORL人脸数据库,包含400幅人脸图像(40人, 每人1O幅, 大小为112像素x92像素)(ORL face database, including 400 face images (40 people, 10 for each person, 112 pixels x 92 pixels in size))