搜索资源列表
segment
- 使用OPENCV的基于图片的超像素分割。-NOTHING
VandewalleSV06_matlab
- 基于频域的配准在图像超分辨率上的应用,通过图像像素的移动,来实现图像超分辨率的重构-Registration based on frequency domain super-resolution images on the application of the movement through the image pixels to achieve super-resolution reconstruction of image
modeling
- 自己写的基于轨迹分析和超像素分割的运动目标提取算法-Write their own moving object extraction algorithm based on trajectory analysis and super-pixel segmentation
fg_masks.tar
- 自动前背景分割,基于超像素、形状和外观前验概率及图切割-A novel foreground/background segmentation algorithm that attempts to segment the interesting objects from the rest of the image.The model includes a geometric prior and an appearance prior, whose parameters are lear
SLIC_SuperPixel
- 基于K-means聚类的超像素分割,可用于图像处理和模式识别-superpixel segmentation
NCsp
- 一个非常有用的基于图的超像素算法,用于图像分割,使用时请添加目录-a very useful superpixels algithn based on geraph theory, it can be used for image segmentation, please add file catalogue when used
super-pixel
- 基于熵率的超像素分割代码,是顶级会议上的代码-Entropy Rate Superpixel Segmentation
slic
- 基于matlab的超像素图像分割算法实现代码,将图像分割为小块表示-Matlab-based super-pixel image segmentation algorithm code, the image is divided into small representation
CVPR12_SAS_code
- 一种基于超像素的图像分割程序,是cvpr13年文章的相应代码,可以学习下-An ultra-pixel-based image segmentation procedure is the appropriate code cvpr13 In the article, you can learn under
daima
- 分水岭算法 matalab标记方法实现 基于分水岭方法的图像超像素分割方法研究-watershed algorithm
Superpixel-saliency
- 基于区域的超像素显著性检测,一篇关于基于超像素的显著性图像分析的文章,将超像素很好的应用于图像分割中。c++代码实现-Significant super pixels detection based on region, the significance of an article about, based on very pixel image analysis, super good pixels was applied to image segmentation.C++ code
NCuts-SuperPixel
- 大会议上的牛人代码,基于图论的方法(Graph-based algorithms)超像素生成-Graph-based algorithms
ers-master
- ers图像超像素方法 该图像超像素方法是基于ers方法,可以对灰度图像(即二维)图像)进行超像素分割-ers image superpixels method of this method is based on image superpixels ers method, gray image (ie two-dimensional) image) super pixel division
TIP_14_SPL
- 基于多尺度超像素的显著性检测代码和文章-Saliency Detection with Multi-Scale Superpixels
eccv10-jtighe
- 基于超像素的可伸缩的非参数图像稀疏化 即超稀疏-SuperParsing: Scalable Nonparametric Image Parsing with Superpixels
Superpixel-Segmentati
- 1. 理解基于超像素进行图像分割的原理,设计合理的分割算法; 2. 实现图像分割算法,得到准确的分割效果; 3. 进行快速算法研究,实现快速的图像分割。 成果形式:-1 u7406 u89E3 u57FA u4E8 u8D0 u8DF u7D20 u8FDB u684C u56FE u50CF u5206 u5272 u7684 u539F u7406 uFF0C u8BBE u8BA1 u5408 u7406 u7684 u5206
SLICPdbscan
- 本设计是基于超像素的图像分割代码,可以实现图像前景和后景的分割。没有人机交互界面GUI。- U672C u8BB u8B1 u662F u57FA u5FF u524F u5BF u5BF u5DF u7D0 u7R0 u7684 u56FE u50CF u5206 u5272 u4EE3 u7801 uFF0C u53EF u4E5 u5B9E u73B0 u56FE u50CF u524D u666F U548C u540E u
src
- 基于opencv版本的SLIC超像素算法(SLIC super pixel algorithm based on OpenCV version)
显著性物体分割
- 基于超像素和流行学习排序的显著性检测,是显著性检测里的经典文章,代码没有问题,可以后续接上grab cut进行显著目标的分割,分割效果不错。
MATLAB版超像素划分
- 此超像素分割代码是基于简单线性迭代SLIC实现,根据LAB颜色空间下颜色相似度完成图像分割,是目前比较流行的一种分割办法。