搜索资源列表
kl
- (1)应用9×9的窗口对上述图象进行随机抽样,共抽样200块子图象; (2)将所有子图象按列相接变成一个81维的行向量; (3)对所有200个行向量进行KL变换,求出其对应的协方差矩阵的特征向量和特征值,按降序排列特征值以及所对应的特征向量; (4)选择前40个最大特征值所对应的特征向量作为主元,将原图象块向这40个特征向量上投影,所获得的投影系数就是这个子块的特征向量。 (5)求出所有子块的特征向量。
texture
- 实现用matlab求矩阵最大特征值的特征向量
calcPCA
- opencv 中用calcPCA 计算矩阵特征向量和特征值
pcacode
- 程序设计步骤: 1、去均值 2、计算协方差矩阵及其特征值和特征向量 3、计算协方差矩阵的特征值大于阈值的个数 4、降序排列特征值 5、去掉较小的特征值 6、去掉较大的特征值(一般没有这一步) 7、合并选择的特征值 8、选择相应的特征值和特征向量 9、计算白化矩阵 10、提取主分量
matlab-PCA 基于matlab的PCA人脸识别完成程序
- 基于matlab的PCA人脸识别完成程序,包含特征值与特征向量的提取、训练样本以复制到matlab即可,成功运行,及最后的识别检验-A full implementation of ICA,PCA,LDA,SVM,in both orginal and incremental in model of real time learnign for face recognition
Matrix
- 求矩阵的特征值和特征向量,使用c语言编程-Matrix eigenvalues and eigenvectors, c language programming
tezhengzhi
- 北航数值分析大作业,计算特征值.计算矩阵特征值及特征向量-Numerical analysis of Northern Great job, calculate the eigenvalues
face
- PCA人脸识别基于PCA的人脸识别 (Eigenface)读入20幅训练图像 。 计算均值、协方差矩阵 、特征值 和特征向量 ,并记录计算所耗费的时间 。并在figure(i)中显示特征脸Eigenface 。计算4幅测试图像 ,及其在 空间中的重建图像 ,在figure(i) 和 figure(10+i)中分别显示测试图像 和重建图像 。计算4幅测试图像 的重建误差 ,比较并阐释 之间的差异及其原因。 -PCA
KLtransform
- (1)应用9×9的窗口对上述图象进行随机抽样,共抽样200块子图象; (2)将所有子图象按列相接变成一个81维的行向量; (3)对所有200个行向量进行KL变换,求出其对应的协方差矩阵的特征向量和特征值,按降序排列特征值以及所对应的特征向量; (4)选择前40个最大特征值所对应的特征向量作为主元,将原图象块向这40个特征向量上投影,所获得的投影系数就是这个子块的特征向量。 (5)求出所有子块的特征向量。 -(1) the application of 9 × 9 window
PCA
- PCA主成分分析用于人脸识别,提取特征值特征向量。有ORL人脸库。-PCA principal component analysis for face recognition, extraction Eigenvalue eigenvector. Have ORL face database.
eigdec
- 此程序可以用来求数据样本的特征值和对应的特征向量,并使其按从大到小的次序排列-This procedure can be used to seek data on the characteristics of the sample values and the corresponding eigenvector, and its order in accordance with the smallest
pcaProgram
- PCA算法程序设计步骤: 1、取均值 2、计算协方差矩阵及其特征值和特征向量 3、计算协方差矩阵的特征值大于阈值的个数 4、降序排列特征值 5、去掉较小的特征值 6、去掉较大的特征值(一般没有这一步) 7、合并选择的特征值 8、选择相应的特征值和特征向量 9、计算白化矩阵 10、提取主分量 -PCA algorithm programming steps: 1, access means 2, the calculation of
pca
- 主元分析求取特征值和特征向量,用于直线倾角检测,及此倾角下的直线分布长度-The PCA is used to detect lines and the angles of lines
ImagePCA
- 该类计算图像的主分量,特征值,特征向量,并且使用主分量重构.-The main components of such calculation of the image, feature values, feature vectors, and the use of principal component reconstruction.
ImprovedPCAFaceRecognitionAlgorithm
- 摘要:主成分分析(PCA)的人脸识别算法,以减少的特征向量是涉及到对抽象的特点,改进了主成分分析(一)iUumination算法的变化影响酶原sed.The方法是基于上减低与正常化其相应的标准差的特征向量元素相关联的大特征值的特征向量的影响力的想法。耶鲁大学和耶鲁大学面临的数据库面对数据库B是用来验证-Abstract:In principal component analysis(PCA)algorithms for face recognition,to reduce the influen
PCA_nvecs
- PCA转换之后,会得到按序排列的特征值和特征向量,取前n个,进行PCA投影-After PCA transformation, will be in descending order of eigenvalues and eigenvectors, fetch the first n months, for PCA projection
18241674calcPCA
- 利用Visualc++简单快速计算矩阵的特征值和特征向量 -Using Visualc++ is simple and fast calculation of eigenvalues and eigenvectors
Wavelet_denoising
- 基于小波变换的纹理特征提取方法,可以提取特征值,经过修改也可以提取其他特征向量!-Wavelet-based texture feature extraction method can extract the characteristic values can also be modified to extract the other eigenvectors!
Estimation-of-Diffusion-Tensor
- 离散张量核磁共振成像数据集的可视化,涉及到特征值,特征向量-Visualization of discrete tensor magnetic resonance imaging data sets related to the eigenvalues, eigenvectors
主成分分析
- 主成分分析PCA源码分析,使用matlab编程,是一种降维方法,通过计算数据矩阵的协方差矩阵,然后得到协方差矩阵的特征值特征向量,选择特征值最大(即方差最大)的k个特征所对应的特征向量组成的矩阵。这样就可以将数据矩阵转换到新的空间当中,实现数据特征的降维。