搜索资源列表
PCA_K
- PCA的思想为将图像的协方差矩阵分解,获得分解后的方向向量。然后将数据分别投影到某一个方向上去,获得与原图象近似的图像。当然,与最大特征值所对应的特征向量方向获得最好的图像。因此,PCA方法可以作为降维的一种方法。留下在某些方向较好的图像,而抛弃那些在另外一些方向上不好的图像。-PCA ideas as to decompose the covariance matrix of the image, the direction vector obtained after decompositio
CLASSICALMUSIC1
- MUSIC算法[1] 是一种基于矩阵特征空间分解的方法。从几何角度讲,信号处理的观测空间可以分解为信号子空间和噪声子空间,显然这两个空间是正交的。信号子空间由阵列接收到的数据协方差矩阵中与信号对应的特征向量组成,噪声子空间则由协方差矩阵中所有最小特征值(噪声方差)对应的特征向量组成。MUSIC算法就是利用这两个互补空间之间的正交特性来估计空间信号的方位。噪声子空间的所有向量被用来构造谱,所有空间方位谱中的峰值位置对应信号的来波方位。MUSIC算法大大提高了测向分辨率,同时适应于任意形状的天线阵列
pca2
- 读图 mix imread( romems.jpg ) pan imread( rome_pan.jpg ) 显示原多光谱图 subplot(221) imshow(mix),title( 多光谱 ) subplot(222) imshow(pan),title( 全色图像 ) 预处理 mix double(mix)/255 pan double(pan)/255 求相关矩阵 [r c bands] size(mix) p