搜索资源列表
matrix
- 应用vc++编辑矩阵的各种运算,矩阵的加法,矩阵的乘法,矩阵的转置,求逆
广义预测控制
- 广义预测控制(GPC)是一种鲁棒性强、能够有效地克服系统滞后、可应用于开环不稳定非最小相位系统的先进控制算法,但由于它需要Diophantine方程计算、矩阵求逆和最小二乘的递推求解,因此计算量很大,本文针对此缺陷提出四种不基于对象模型且实时性高的广义预测控制快速算法
matrix_convert_cPP
- 用c++语言来写的求矩阵的逆,比MATLAB来说,略显的有一点复杂-With c++ language to write the inverse matrix of demand than MATLAB, the bit' s a little complicated
MatrixInverse
- 求逆矩阵算法,输入原矩阵、维数以及允许误差,输出其逆矩阵-MatrixInverse
pointcloudpeizhun
- 根据标靶的坐标(控制点),运用高斯-约当法进行矩阵的求逆和转换,进行三维点云数据的配准,输入数据文件在压缩包中有原例,请参考!-In accordance with the target coordinates (control points), the use of Gauss- Jordan method of matrix inversion and transformation, three-dimensional point cloud data registration, enter
qiuni
- 矩阵求逆计算 主要用于GIS二次开发中-qiu ni
Maxmain
- 矩阵最大主元算法,通过行列变换,使主对角线上的元素尽可能最大。从而避免求逆时除以一个较小获为0的数-Get the max main element Matirx
matrix
- 矩阵相乘和求逆,矩阵求逆进行LV分解,测试结果与matlab一样-Matrix multiplication and inverse, matrix inverse to LV decomposition, the same test results with matlab
3
- 单想空间后方交会,里面包括旋转矩阵的运算,求逆,转置等-One would like to space resection
houfangjiaohui
- 摄影测量单片空间后方交会,包括矩阵的转稚、求逆、相乘-sheyingceliangkongjiaohoujiao
Matrixes
- 包含矩阵和行列式各种操作的程序,有main测试函数和功能头文件。功能包括矩阵的加、乘运算,行列式求值,矩阵求逆,求秩-Various operations including matrix and the determinant of the procedures, test the functions and features main header file. Features include matrix addition, multiplication operator, determi
Gauss_Jordan_law_of_inverse_matrix
- Gauss_Jordan法求逆矩阵的VC++程序-Gauss_Jordan law of inverse matrix to VC++ program
rinv
- 用C++语言实现求一般矩阵的逆。方法为高斯约当法。-C++ language by Finding the inverse matrix. Methods for the Gauss Jordan method.
22
- 矩阵求秩,矩阵的反运算,矩阵的可逆矩阵,矩阵的加减乘除-Rank matrix, the matrix is logically, invertible matrix, matrix addition and subtraction, multiplication and division
Delphi_Matrix_inv
- 矩阵求逆的delphi实现,值得参考 编程简单高效率-matrix inv delphi codes ok good performance
hividepurposes
- 用c写的对矩阵求逆的算法,采用直接迭代,适合2阶和3阶矩阵()
03706747
- 一个关于处理矩阵求逆的代码,希望对大家有帮助()
qref
- 实现了几种矩阵求逆的方法,有助于初学矩阵分析的人理解矩阵求逆()
wecializationkbatch
- 矩阵,复数自定义数据类型的C++实现,矩阵求逆采用牛顿法,()
矩阵求逆的几种方法总结
- 列举了几种对矩阵进行求逆的方法,用于之后的间接采样。(Several methods for inverting the matrix are listed for subsequent indirect sampling.)