搜索资源列表
一种二值图象无损压缩算法
- 【摘 要】利用稀疏矩阵和差分编码对二色图像进行压缩保存,在通过图像的0,1矩阵建立,矩阵一维化,差分量化编码,写文件来压缩。在电子档案存储,CAD制图信息化存储有极高的应用价值。 【关键字】计算机 二值图像 稀疏矩阵 无损压缩 编码
Steganographic_Encoding
- 密写编码技术以占用较多的载体数据为代价来减少对载体数据的修改量,从而降低信息隐藏引起的失 真. 本文首先将密写编码方法的构造转化为一个数据的稀疏表示问题,然后提出密写编码构造算法. 利用该构造算法 可得到一系列密写编码方法,并进一步研究密写编码的组合形式,在不同占用率条件下获得了良好的编码性能,优于 矩阵密写编码和游动密写编码.-Steganographic Encoding Ba sed on Sparse Repre sentation
eccv10guidedfilter
- 本文作者提出了一种算法来简化图像抠图算法中的一个大型稀疏矩阵的计算方法,提高了效率。-This paper presents a method of image matting algorithm to simplify the calculation of a large sparse matrix methods to improve efficiency.
xishujuzhen
- 稀疏矩阵的算法设计 稀疏矩阵的算法设计 稀疏矩阵的算法设计 -Sparse matrix sparse matrix algorithm algorithm algorithm sparse matrix sparse matrix sparse matrix algorithm algorithm algorithm design of sparse matrix
OMP
- 压缩感知的一种正交匹配追踪重构算法,稀疏描述,观测矩阵,图像重构-Compressed sensing reconstruction algorithm orthogonal matching pursuit, sparse descr iption, observation matrix, image reconstruction
sy
- 压缩感知的经典代码,包括观测,稀疏表示,重建,其中观测用的高斯观测矩阵,稀疏用的DCT,重建用的OMP算法-Compressed sensing of the classic code, including observations, sparse representation, reconstruction, observed with a Gaussian observation matrix, sparse use of the DCT, re-use of the OMP algorit
cs
- 利用压缩感知对图像进行处理 先用小波变换生成矩阵,再利用正交匹配追踪算法,在对图像进行稀疏处理后进行正交匹配追踪 -Orthogonal matching pursuit algorithm for image processing First generated using wavelet transform matrix orthogonal matching pursuit, sparse processing image
Wavelet_IRLS
- 压缩感知CS——采用小波变换进行稀疏表示,高斯随机矩阵为观测矩阵,重构算法为ILRS算法,对256*256的lena图处理,比较原图和IRLS算法在不同采样比例(0.74、0.5、0.3)下的重构效果,并各运行50次,比较算法性能PSNR和每次的运行时间-Compressed sensing CS- using wavelet transform as sparse representation, Gaussian random matrix as the observation matrix
Wavelet_OMP
- 压缩感知CS——采用小波变换进行稀疏表示,高斯随机矩阵为观测矩阵,重构算法为OMP算法,对256*256的lena图处理,比较原图和OMP算法在不同采样比例(0.74、0.5、0.3)下的重构效果,并各运行50次,比较算法性能PSNR和每次的运行时间 -Compressed sensing CS- using wavelet transform as sparse representation, Gaussian random matrix as the observation matrix
Wavelet_SP
- 压缩感知CS——采用小波变换进行稀疏表示,高斯随机矩阵为观测矩阵,重构算法为SP算法,对256*256的lena图处理,比较原图和SP算法在不同采样比例(0.74、0.5、0.3)下的重构效果,并各运行50次,比较算法性能PSNR和每次的运行时间-Compressed sensing CS- using wavelet transform as sparse representation, Gaussian random matrix as the observation matrix and
Wavelet_ROMP
- 压缩感知CS——采用小波变换进行稀疏表示,高斯随机矩阵为观测矩阵,重构算法为ROMP算法,对256*256的lena图处理,比较原图和ROMP算法在不同采样比例(0.74、0.5、0.3)下的重构效果,并各运行50次,比较算法性能PSNR和每次的运行时间 -Compressed sensing CS- using wavelet transform as sparse representation, Gaussian random matrix as the observation matr
Wavelet_SL0
- 压缩感知CS——采用小波变换进行稀疏表示,高斯随机矩阵为观测矩阵,重构算法为SL0算法,对256*256的lena图处理,比较原图和SL0算法在不同采样比例(0.74、0.5、0.3)下的重构效果,并各运行50次,比较算法性能PSNR和每次的运行时间 -Compressed sensing CS- using wavelet transform as sparse representation, Gaussian random matrix as the observation matrix
DCT_Gaosi_fenkuai
- 对256*256大小的8bit灰度lena图像进行仿真 将图像分为16*16的分块进行计算 稀疏矩阵采用DCT矩阵,观测矩阵采用高斯随机矩阵,重构采用OMP算法- 256* 256 size lena image simulation 8bit grayscale image is divided into 16 * 16 calculate block sparse matrix using DCT matrix, observation matrix using Ga
SpaRCS
- 主要介绍了一种新的恢复算法SpaRCS,可以从压缩测量值中恢复低秩和稀疏矩阵-Introduced a new recovery algorithm SpaRCS, the measured value can be recovered from the compressed low-rank and sparse matrix
bcs-spl-1.5-1.tar
- 一种适用于图像的压缩感知采样策略和重建算法,采样策略是基于块的图像稀疏采样矩阵,重建算法为smoothed projected Landweber(SPL)迭代算法。-BCS-SPL combines block-based compressed-sensing sampling (BCS) of an image with a smoothed projected-Landweber (SPL) iterative reconstruction. Sampling is driven by r
DIP
- 包含基于三种不同方法的应用于图像处理的矩阵低秩分解的matlab算法,可以将目标图像分解为一个低秩图像和一个稀疏图像之和;并包含一种基于区域生长方法的图像区域识别程序,可以用来提取图像中的目标。-Containing used in image processing based on three different methods of low-rank matrix decomposition algorithm matlab, the target image can be decompos
ONSL0
- ONSL0稀疏重构算法是NSL0的优化版 输入: y:测量值向量 A:测量矩阵 A_pinv:A的广义逆 输出: xr:重构信号 用于对信号或者图像的压缩重构-ONSL0 u7A00 u758F u91CD u6784 u7B97 u6CD5 u662FNSL0 u7684 u4F18 u5316 u7248 u8F93 u5165: y: u6D4B u91CF u503C u5411 u91CF A: u6D4B u91CF u7
SVT
- SVT 低秩矩阵恢复,可用于稀疏表示、图像恢复(SVT for low rank matrix completion)
sej-uaser
- 矩阵的运算算法 这里有加减乘和转置 用C语言编的 注意输入 算法用于稀疏矩阵()
multi_scale_low_rank-master
- 采用ADMM算法对矩阵进行多尺度低秩稀疏分解(Low rank sparse decomposition of multiscale matrix)