搜索资源列表
unet
- 对图片进行纹路切割。基于Keras,实现神经网络的图片训练(Based on Keras, the picture is cut in pattern, and the picture training of the neural network is realized.)
TensorFlow-Examples-master
- 基于Tensorflow的Unet实现,里面有详细的教程。(TensorFlow for Unet, in which there are detailed teaching lecture.)
Unet-master1
- 适用对象:小样本数据。功能:分割各种类型图像。评价:效果良好的深度学习算法。(Applicable object: small sample data. Function: Segmentation of various types of images. Evaluation: A good deep learning algorithm.)
unet-pytorch-master
- 使用Pytorch搭建U-Net,该模型可以对随机传入任意大小的图片进行图片分割,根据所训练的数据和标签得到索要分割的区域。(Using Python to build u-net, the model can segment random incoming pictures of any size, and get the region to be segmented according to the trained data and labels.)
Unet
- UNet最早发表在2015的MICCAI上,短短3年,引用量目前已经达到了4070,足以见得其影响力。而后成为大多做医疗影像语义分割任务的baseline,也启发了大量研究者去思考U型语义分割网络。而如今在自然影像理解方面,也有越来越多的语义分割和目标检测SOTA模型开始关注和使用U型结构,比如语义分割Discriminative Feature Network(DFN)(CVPR2018),目标检测Feature Pyramid Networks for Object Detection(FP