搜索资源列表
-
0下载:
本文提出了一种新的跨国家的障碍
检测技术为基础的立体视觉系统。
原始图像的预处理的高斯
过滤器和对比度限制的自适应直方图
均衡( CLAHE )方法来削弱作用 噪音,光线和对比度。哈里斯的角落位于与子像素精确。
-Cross-country intelligent vehicles always work in
complicated environments with varying illuminations.
The paper presents a n
-
-
0下载:
用来产生多变量高斯过程的MATLAB源程序。-MULTI_GP generates a multivariate Gaussian random process with mean vector m (column vector) and covariance matrix C。
-
-
0下载:
压缩感知CS——采用小波变换进行稀疏表示,高斯随机矩阵为观测矩阵,重构算法为ILRS算法,对256*256的lena图处理,比较原图和IRLS算法在不同采样比例(0.74、0.5、0.3)下的重构效果,并各运行50次,比较算法性能PSNR和每次的运行时间-Compressed sensing CS- using wavelet transform as sparse representation, Gaussian random matrix as the observation matrix
-
-
0下载:
压缩感知CS——采用小波变换进行稀疏表示,高斯随机矩阵为观测矩阵,重构算法为OMP算法,对256*256的lena图处理,比较原图和OMP算法在不同采样比例(0.74、0.5、0.3)下的重构效果,并各运行50次,比较算法性能PSNR和每次的运行时间
-Compressed sensing CS- using wavelet transform as sparse representation, Gaussian random matrix as the observation matrix
-
-
1下载:
压缩感知CS——采用小波变换进行稀疏表示,高斯随机矩阵为观测矩阵,重构算法为SP算法,对256*256的lena图处理,比较原图和SP算法在不同采样比例(0.74、0.5、0.3)下的重构效果,并各运行50次,比较算法性能PSNR和每次的运行时间-Compressed sensing CS- using wavelet transform as sparse representation, Gaussian random matrix as the observation matrix and
-
-
0下载:
压缩感知CS——采用小波变换进行稀疏表示,高斯随机矩阵为观测矩阵,重构算法为ROMP算法,对256*256的lena图处理,比较原图和ROMP算法在不同采样比例(0.74、0.5、0.3)下的重构效果,并各运行50次,比较算法性能PSNR和每次的运行时间
-Compressed sensing CS- using wavelet transform as sparse representation, Gaussian random matrix as the observation matr
-
-
2下载:
压缩感知CS——采用小波变换进行稀疏表示,高斯随机矩阵为观测矩阵,重构算法为SL0算法,对256*256的lena图处理,比较原图和SL0算法在不同采样比例(0.74、0.5、0.3)下的重构效果,并各运行50次,比较算法性能PSNR和每次的运行时间
-Compressed sensing CS- using wavelet transform as sparse representation, Gaussian random matrix as the observation matrix
-
-
1下载:
对256*256大小的8bit灰度lena图像进行仿真
将图像分为16*16的分块进行计算
稀疏矩阵采用DCT矩阵,观测矩阵采用高斯随机矩阵,重构采用OMP算法- 256* 256 size lena image simulation 8bit grayscale image is divided into 16 * 16 calculate block sparse matrix using DCT matrix, observation matrix using Ga
-
-
0下载:
应用傅立叶变换矩阵对信号进行稀疏,经高斯随机观测矩阵观测,经正交匹配追踪算法重构.压缩感知入门程序-The Fourier transform matrix is used to spill the signal. Observed by Gaussian random observation matrix and reconstructed by orthogonal matching tracing algorithm. Compression Sensing Getting Started
-