搜索资源列表
ShapeContextProjects
- 图形识别算法 可用于图形识别以及 验证码识别研究-The main part of the code uses improved Shape Context as feature descr iptor and fit into a Hough Voting framework to detect objects. It can be used for initial hypothesis proposal. I hope you find this code helpful!
1
- Cognitive radio frequency spectrum detection-The spectrum sensing of a wideband frequency range is studied by dividing it into multiple subbands. It is assumed that in each subband either a primary user (PU) is active or absent in a additive white
20091004
- 本文提出了一种视频运动对象的提取算法,该算法采用序列图像帧间差的高阶统计量(HOS)假设检验,确定运动对象的位置,自动分离运动区域与背景!-This paper presents a video moving object extraction algorithm, which uses inter-frame sequence of images of poor higher-order statistics (HOS) hypothesis testing to determine the
alglib-3.2.0.cpp
- ALGLIB is a cross-platform numerical analysis and data processing library. It supports several programming languages (C++, C#, Pascal, VBA) and several operating systems (Windows, Linux, Solaris). ALGLIB features include: • Linear algebra (di
19_EVALUATING_A_MULTIPLE
- Evaluating a multiple hypothesis multitarget tracking algorithm
Optical-flow
- Horn -Schunck方法 此方法是首次使用亮度恒定假设和推导出基本的之一。 Horn 和 Schunck求解方程法的假设是一个速度平滑约束。本次作业 求解方程法的假设是一个速度平滑约束。本次作 业中采用Visual studio 2008下配置 opencv2.1实现该算法。-Horn and Schunck method This method is the first time use brightness constancy assumption and one of the
Thzatilgoritn
- The particle swarm optimization (PSO) algorithm is a new population based search strat- egy, which has exhibited good performance on well-known numerical test problems. How- ever, on strongly multi-modal test problems the PSO tends to suffer prem
Tht
- The particle swarm optimization (PSO) algorithm is a new population based search strat- egy, which has exhibited good performance on well-known numerical test problems. How- ever, on strongly multi-modal test problems the PSO tends to suffer prem
SALICY
- 显著性检验(significance test)就是事先对总体(随机变量)的参数或总体分布形式做出一个假设,然后利用样本信息来判断这个假设(备择假设)是否合理,即判断总体的真实情况与原假设是否有显著性差异。或者说,显著性检验要判断样本与我们对总体所做的假设之间的差异是纯属机会变异,还是由我们所做的假设与总体真实情况之间不一致所引起的。 显著性检验是针对我们对总体所做的假设做检验,其原理就是“小概率事件实际不可能性原理”来接受或否定假设。 抽样实验会产生抽样误差,对实验资料进行比较分析时,不能仅凭
Saliency
- 显著性检验(significance test)就是事先对总体(随机变量)的参数或总体分布形式做出一个假设,然后利用样本信息来判断这个假设(备择假设)是否合理,即判断总体的真实情况与原假设是否有显著性差异。或者说,显著性检验要判断样本与我们对总体所做的假设之间的差异是纯属机会变异,还是由我们所做的假设与总体真实情况之间不一致所引起的。 显著性检验是针对我们对总体所做的假设做检验,其原理就是“小概率事件实际不可能性原理”来接受或否定假设。(difference between the signif