搜索资源列表
T96b
- 分水岭算法——“汇水盆地”的确定 搜索局部最大种子点,设置阈值标志和阈值-watershed algorithm -- "catchment basin" to determine the best local search seeds, setting the threshold value and a threshold
Eyesegmentation
- 睫毛最优阈值化处理之后用基于连通域搜索的方法进行噪声点删除,主要用到函数bwareaopen,代码包含在jiemao.m文件中。-Optimal threshold eyelashes after treatment with the method based on connected local search to remove the noise points, mainly used in the function bwareaopen, the code contained in the
yizhongsuijiduotuoyuanjiancedekuaisusuanfa
- 针对多椭圆检测问题提出了一种快速随机检测算法。该算法利用在图像中随机采样到的一个边缘点和 局部搜索到的两个边缘点以及这三个点的邻域信息确定候选椭圆,再将候选椭圆变换为对应圆,通过确认真圆来确 认真椭圆。在确定候选椭圆时,最大限度地减少随机采样点数 剔除更多的非椭圆点,降低了无效采样,减少了无效 计算。数值实验结果表明:该算法具有良好的鲁棒性,其检测速度比同类算法快-Ellipse detection problem for many a fast random detect
20090501SleepingKoala
- 所上传文件包包括6种vc++源代码:使用opencv的实现可视图的静态路径规划;简单的svm算法;基于vc2008的图像匹配(多工程结构);基于局部搜索的K-means聚类算法;三维匹配中的ICP算法;视觉tracking中的condensation算法-Upload file package, including the six kinds of vc++ source code: using opencv to view the realization of the static path
0.618
- 一维搜索0.618黄金分割点算法,只适用于单峰函数的局部搜索。经过编译。-One-dimension search algorithm, Gold segmentation algorithm .It applies only to the local search of single-peak function.
10.1.1.41.2528
- Choice of Wavelets for Image Compression In wavelet-based image coding the choice of wavelets is crucial and determines the coding performance. Current techniques use computationally intensive search procedures to find the optimal basis (type,
pso1
- 某些实际问题的优化目标是求所有的局部最优解, 即求解多峰寻优问题, 为了求解多峰优化问题, 提出了改造的微粒 群优化算法. 尽量减少微粒群算法中的全局因素, 从而增大其局部因素, 同时采用变步长方法增加微粒的多样性. 并给出了该算法 的原理和步骤. 仿真实验表明该算法概念清楚, 计算简单, 具有很好的局部寻优特性, 可应用求解于多峰寻优问题. 另外还给出了几 个运算实例和与其它优化算法的比较.-Some of the practical problems the optimizati
pso3
- 为寻求复杂多峰函数的全局最优解问题, 提出了新型混合算法。该算法由带共享函数 的遗传算法、移民技术、聚类算法和改进的Pow ell 算法组成。由于上述算法的有机配合, 提高了 混合算法的全局和局部搜索能力。油藏系统应用实例和仿真实例证明了算法的有效性-Complex multimodal function to find a global optimal solution of problem, a new hybrid algorithm. The algorithm function
pso4
- 本文研究了多峰优化问题, 利用梯度算子和筛选策略, 得到了一种可求解多峰函数 全部最优解的改进型遗传算法. 数值模拟结果表明, 该算法在处理复杂多峰函数优化问题时, 局 部搜索能力和克服过早收敛能力方面相对于传统遗传算法均有很大提高.-In this paper, multimodal optimization problems, the use of gradient operator and screening strategies can be solved by a multi-
caltech-image-search-1.0
- 大规模图像检索的代码,matlab与c++混合编程。总结了目前图像检索领域目前主要存在的方法。通过阅读该代码,可以对于经典的“词袋”模型(bow模型)有个具体的了解,但是该代码没有提供前序的特征提取,是直接从对提取好的特征向量聚类开始的,包括了k-means,分层k-means(HKM)聚类,倒排文件的建立和索引等,该代码还提供了局部敏感哈希(LSH)方法。最后,这份代码是下面这篇论文的作者提供的, Indexing in Large Scale Image Collections: Sc
NLMeans
- 非局部均值滤波 输入: 待平滑的图像 t: 搜索窗口半径 f: 相似性窗口半径 h: 平滑参数 NLmeans(ima,5,2,sigma)-Non-local mean filtering input: to be a smooth image t: the search window radius f: similarity of the window radius h: smoothing parameter NLmeans (ima, 5,2, s
NLmeansfilter
- 进行对非局部均值算法的详细讨论包括权值的计算,均值的实现以及对于搜索窗口的讨论-Detailed discussion of the non-local means algorithm including the calculation of the weights, the realization of the mean and the discussion of the search window
NLMeans
- 非局部均值图像去噪,基于搜索窗 区域相似性-Non-local means image denoising based similarity search window area
bmvc06_lau_chung
- 医学图像配准,医学图像2D_3D配准,基于vc++开发。-Although the presence of local minima is one of the major problems in high-dimensional image registration, only a few experimental works have been carried out to address this problem. In this study, a 3D-2D vascular
NLmeansfilter
- anisotropic diffusion input: image to be filtered t: radio of search window f: radio of similarity window k: degree of filtering sigma: noise standard deviation Author: Jose Vicente Manjon Herrera & Antoni Buades Date: 09
Bee-algorithmeedgedetection
- Proposed edge detection method based on bee colony algorithm. Utilization Characteristics colony algorithm for image boundary quick search, too To a group of local optima, and then were local minima to start the search, to find the edge of the imag
NLmeansfilter
- 非局部均值是一种基于快匹配来确定滤波权值的。即先确定一个块的大小,例如7x7,然后在确定一个搜索区域,例如15x15,在15x15这个搜索区域中的每一个点,计算7x7的窗口与当前滤波点7x7窗口的绝对差值和,然后在计算一个指数函数,所有的搜索点都用指数函数计算出一个权值,当然还有权值的归一化。根据这个权值进行点的滤波操作。-It is a non-local means to determine the filter weight based on fast matching. That is,
cguster
- 蚁群算法的另一种实现形式,通过全局的搜索,避免陷入局部解的改进程序-Another realization forms of the ant colony algorithm, through global search, avoid falling into local solution of the improvement program