搜索资源列表
opencv pca
- 该 程序是用opencv做的基于pca人脸识别源码,希望对大家有参考价值。
SIFTSURF
- SIFT算法、SURF算法和PCA—SIFT算法的实例,里面要安装OPENCV才能用的-SIFT algorithm, SURF algorithm and PCA-SIFT algorithm instance, which can be used to install OPENCV
FaceReco_PCA3
- 这是一个用VC6编写的PCA人脸识别程序,用到了opencv库,库文件一起上传了,可以直接编译。也有相应的训练与测试图像。感觉效果还可以!-This is a PCA face recognition using VC6 written procedures, use the opencv library, library file with the upload, can be directly compiled. Have corresponding training and test im
PCA--learning
- PCA数学基础介绍,以及附带用opencv写的测试程序-PCA mathematics foundation introduction, and additional opencv write with the test procedures
LearningOpenCV
- Learning OPENCV 是2008年最新的opencv学习教程 非常实用的教程-Learning OPENCV is the latest in 2008 learning opencv tutorial very useful tutorial
PCA
- 人脸识别里面,用c++讲PCA程序系统化,有输出界面-Face Recognition inside, using c++-speaking PCA procedure systematic, there is the output interface
pca
- 基于VC的PCA人脸识别,人脸库需要自己加入-The PCA-based Face Recognition VC
PCA
- 在图像处理特别是人脸识别中经常用到PCA算法,这是基于Opencv的PCA算法。-In the image processing in particular are often used in PCA face recognition algorithm, which is based on the Opencv the PCA algorithm.
VCPCA
- c++ pca opencv c++ pca opencv
PCA
- face recognition using PCA buy opencv
pca
- this function to load image from any folder using opencv
PCA-and-for-the-face-recognition-
- 主成分分析,及其用于人脸识别的算法实现。-Principal component analysis, and for the face recognition algorithm.
face-opencv-cPP
- 基于opencv 人脸识别 pca 算法 c++的实现 -Pca-based face recognition algorithm opencv c++ implementation
face-rec-demo
- PCA in Opencv using C plus plus. demo
part1-src
- PCA in Opencv. how to use egeinface
PCA
- This Code is the PCA using the plataform OpenCv
opencv_pca2
- 基于opencv的PCA程序,不是调用opencv的PCA函数,而是利用opencv的读写,根据主成分算法原理而写的!-PCA program based on OpenCV, OpenCV PCA function is not called, but to read and write using OpenCV, based on the algorithm of principal component and write!
OpenCV-PCA-face-dimension-reduction
- OpenCV中PCA实现人脸降维,基于QT实现-OpenCV PCA face dimension reduction
PCA
- pca降维代码,主要用来给图片进行降维,程序不长,直接用,很方便(PCA Dimension reduction code)
pca
- 在许多领域的研究与应用中,往往需要对反映事物的多个变量进行大量的观测,收集大量数据以便进行分析寻找规律。多变量大样本无疑会为研究和应用提供了丰富的信息,但也在一定程度上增加了数据采集的工作量,更重要的是在多数情况下,许多变量之间可能存在相关性,从而增加了问题分析的复杂性,同时对分析带来不便。如果分别对每个指标进行分析,分析往往是孤立的,而不是综合的。盲目减少指标会损失很多信息,容易产生错误的结论。 因此需要找到一个合理的方法,在减少需要分析的指标同时,尽量减少原指标包含信息的损失,