搜索资源列表
-
0下载:
使用VC++ 6.0 和 OpenCv实现粒子滤波目标跟踪算法,主要功能在MFC对话框内实现。-particle filter object tracking
-
-
0下载:
基于OPENCV实现的粒子滤波运动目标跟踪源程序-Particle Filter Moving Object Tracking based on OPENCV
-
-
1下载:
本系统中VIS欠缺的SIFT_VC.lib文件。。。
http://www.pudn.com/downloads224/sourcecode/math/detail1055031.html-This is lib file, which is used in Video Intelligent System (VIS) based on the Microsoft Visual Studio 2008 compiler environment and OpenCV 2.0 library
-
-
0下载:
基于 Kalman Filter和 Particle Filter的 目标跟踪 脸部跟踪 object tracking c++程序 源码。 -C++ face tracking program code base on Kalman Filter and Particle Filter
-
-
0下载:
This contained BG/FG detection(simple version and adaptive background mixture models), blob tracking(connected component tracking and MSPF resolver, mean shift, particle filter), Kalman filter using OpenCV. It can be helpful who studying object detec
-
-
0下载:
该程序实现了粒子滤波算法,应用重要性重采样对实现对一维空间的非线性跟踪。使用MFC编程完成,效果很好,值得一试。-The codes realize the function of tracking an object with particle filter algorithm. And it is suitable for nonlinear system, with VC++ programming. It is really worth trial
-
-
0下载:
采用粒子滤波算法对目标进行跟踪,特征使用颜色直方图-Particle filter based object tracking using Color Likelihood
-
-
0下载:
2011年IEEE T.的关于On-Road Multivehicle Tracking Using Deformable Object Model and Particle Filter With Improved Likelihood Estimation,请大家分享-2011 IEEE T. on On-Road Multivehicle Tracking Using Deformable Object Model and Particle Filter With Improved Lik
-
-
0下载:
本文提出一种通过实时调整目标特征权值来进行背景自适应跟踪的算法。首先,定义了一种综合特征集合用以描述目标的颜色和局部轮廓。其次,提出了在滤波框架中对目标特征进行评估的算法,从而使得具有强区分能力的特征占有较大的权值,进而使其能够在跟踪过程起到较大的作用。采用传统的Kalman 滤波和粒子滤波对所提出的算法进行了验证。-In this paper, we propose a new adaptive visual object tracking method based on
online f
-
-
0下载:
VS2012,opencv3.0的基于颜色特征的粒子滤波跟踪算法实现,代码比较直观,虽然效率较慢,但容易理解。可直接运行-particle filter in object tracking ,based on color feature vs2012+opencv3.0
-
-
0下载:
用vs2010+opencv2.4.9做的粒子滤波灰度视频目标跟踪,框架完整,同版本下可直接运行,跟踪效果一般-Vs2010+ opencv2.4.9 do with particle filter gray scale video object tracking, frame integrity, and can be run directly under the same version, tracking the general effect
-