搜索资源列表
sicplay
- 用来对2维信号的频域进行sinc插值处理,以放大图像。插值的结果较为理想
绘制函数图形
- turbo C2.0绘制方波、斜变函数、SinC函数图形
interpolation
- 几种插值方法,双线性,三次,最邻近,sinc-Several interpolation, bilinear, cubic, nearest neighbor, sinc
libswscale.zip
- 11中图像缩放算法,包括双线性,双三次,sinc 效果非常好。,matlab write any size color image of the zoom
pp
- 此程序是自适应波束图中的主波束的天线方向图 函数调用了sinc函数-This procedure is adaptive beamforming map of the main beam of the antenna pattern function call the sinc function
src
- 图像线性插值,包括nearest neighbor(pixel duplication),bilinear,bicubic,lanczos,B-spline, cubic,Fourier zero-padding (sinc)-Image linear interpolation, including nearest neighbor (pixel duplication), bilinear, bicubic, lanczos, B-spline, cubic, Fourier zero-pa
MATLAB_Medical_Image_Process_Experiments
- MATLAB医学影像处理实验(内含14个原代码及教学的说明) (1)Plot a sine function using MATLAB, and write the data into a file (2)Read data from a file, plot a SINC function, and append the result back to the same file (3)Plot a Gaussian distribution using MATLAB (4)Fo
sinc
- draw sin function with opengl c-draw sin function with opengl c++
compare
- matlab三种从采样对比和sinc具体代码-Matlab three from sampling contrast and sinc
sinc
- 信息光学sinc函数的二维仿真,直接观察sinc函数图像特真-Information Optics dimensional sinc function simulation, direct observation of the sinc function especially true image
multi-viewport
- 利用opengl实现多视区显示,设定四个视区,分别显示curve.cpp中sinc( ) 、rose( )、hart( )、involute( )函数绘制的曲线。-OPENGL realize the use of multi-viewport display,Set four viewport
xiaoboniheceshi-(2)
- 小波测试程序采用sinc函数验证小波神经网络的拟合能力-Wavelet test program
4-Sinc-kernel--Neural-Networks-
- 4个信号理论的支持向量分类方法从内核神经网络以后22(1)49-57 2009 _nelson_-4 A signal theory approach to support vector classification the Sinc kernel Neural Networks 22 (1) 49-57 2009_nelson_nn
Sincc
- 使用Matlab编写的sinc函数和归一化sinc函数,分别用不同的颜色显示。使用Matlab编写的sinc函数和归一化sinc函数,分别用不同的颜色显示。-The use of Matlab sinc function and normalized sinc function, respectively in different colors.The use of Matlab sinc function and normalized sinc function, respectively i
2
- 基于交叉累计剩余熵的图像配准中插值方法的改进 交叉累计剩余熵(CCRE)比传统互信息在配准强噪声图像时更具优势,但采用部分体积(PV)插值的CCRE在网格点容易产生局部极值,不利于变换参数的优化。针对该问题,研究基于3阶B样条函数的PV插值(BPV)、哈宁窗sinc函数的PV插值(HPV)和Blackman-Harris窗sinc函数的PV插值(BHPV)方法在CCRE中的应用,提出一种新的插值方法。该方法采用灵活的邻域中心,将插值点对联合直方图贡献的权重分散到临近的9个点上,并使用高