搜索资源列表
-
0下载:
最大最小值估计,适合学习统计理论和模糊方面的结合应用,尤其是在模式识别方面的分类。-largest minimum estimate for statistical learning theory and fuzzy combination of the application, especially in regard to the classification of pattern recognition.
-
-
0下载:
这是细胞识别统计代码程序,值得初学者学习,很实用
值得下-This is the cell identification code statistical procedures, it is worth learning beginners, under very practical worth
-
-
1下载:
维数约简工具箱源代码,包括PCA、LLE等学习算法,可用于模式识别、数据挖掘和统计分析等。-dimension reduction toolkit source code, including the PCA, LLE and other learning algorithms can be used for pattern recognition, data mining and statistical analysis.
-
-
0下载:
sltoolbox (Statistical Learning Toolbox) organizes a comprehensive set of matlab codes in statistical learning, pattern recognition and computer vision. It includes 256 m-files in 24 categories, which are from low-level computational routines to high
-
-
0下载:
ISODATA算法是一种基于统计模式识别的,非常经典的非监督学习动态聚类算法,有较强的实用性。ISODATA算法不仅可以通过调整样本所属类别完成样本的聚类分析,而且可以自动地进行类别的“合并”和“分裂”,从而得到类数比较合理的聚类结果。-ISODATA algorithm is based on statistical pattern recognition, unsupervised learning is the classic dynamic clustering algorithm
-
-
0下载:
根据训练样本进行学习,而后对test图像中的字符进行识别。要求给出识别结果,并对结果进行统计。-According to the training samples for learning, and then on the test image to identify the characters. Required to give identification results, and the results of statistical analysis.
-
-
0下载:
选用支持向量机作为区分文本与非文本的分类器,支持向量机是在统计学习理论基础上发展起来的新一代学习算法,它在解决小样本、非线性及高维模式识别问题中表现出许多特有的优势。-Use support vector machine as the distinction between text and non-text classifier, support vector machine is in statistical learning theory developed on the basis of
-
-
0下载:
细胞识别统计系统,采用vc++6.0编写,具有很强的参考价值,适合修改和学习参考。-Cell recognition statistical system, using vc++6.0 to prepare, has a strong reference value for change and learning for reference.
-
-
0下载:
统计学习工具箱,包括在统计学习,模式识别,计算机视觉方面的matlab程序。-Statistical Learning Toolbox organizes a comprehensive set of matlab codes in statistical learning, pattern recognition and computer vision.
-
-
0下载:
支持向量机(Support Vector Machines,简称SVM)是在统计学习理论基础上发
展起来的一种新的通用学习方法,它已初步表现出很多优于已有方法的性能。-SVM (Support Vector Machines, referred to as SVM) is based on statistical learning theory developed a new universal learning method, which has been initially show a
-
-
1下载:
人脸检测,是一篇较好的综述论文。系统地整理分析了人脸检测问题的研究文献, 将人脸检测方法主要划分为基于知识的人脸验证方法和基于统计的学习方法-Face detection is a good review paper. Systematically and analyzed the problem of face detection research literature, the face detection methods into knowledge-based face authenti
-
-
0下载:
学习统计学及图像处理不可或缺的经典之作,内容丰富,并且有难度!需要好好揣摩学系!-Statistical learning and image processing indispensable classic, rich, and difficult! Department needs a good try to figure out!
-
-
0下载:
本书从机器学习的角度介绍了基于视觉的运动分析领域的最新算法和系统。-Techniques of vision-based motion analysis aim to detect, track, identify, and generally understand the behavior of objects in image sequences. With the growth of video data in a wide range of applications from visua
-
-
0下载:
模式识别的内容,包括模式识别的基本概念、模式识别方法及应用。具体的内容包括:正则化网络、Bayes决策理论、分类器组合、统计学习理论、概率密度估计、非监督学习方法-Pattern recognition, including the basic concepts of pattern recognition, pattern recognition methods and applications.Specific content, including: Regularization Netwo
-
-
0下载:
统计机器学习的支持向量机SVM在图像分割中的应用学习报告。-Statistical machine learning support vector machine SVM image segmentation study report.
-
-
0下载:
细胞识别统计系统 主要原程序
仅用于学习交流-Cell recognition statistical system of the original program is only for learning exchanges
-
-
1下载:
本软件适合工程技术人员及学生进行数据分析。适用范围广、输入界面简单方便、功能模块实用强大、操作简便易懂。
本软件可进行二元线性与非线性相关分析;多元线性与非线性相关分析;多元线性的相关矩阵分析;数理统计与误差分析;计算行列式的值、求解多元方程组;学习与研究函数的图形及特性;计算常用函数等等。例如:可对化验分析成果进行回归及误差分析、对地质物化探数据进行相关性分析、对测量数据进行误差分析、对社会调查数据进行统计分析等等。 -The software for engineering an
-
-
0下载:
全参考型视频质量评价方法,基于统计和机器学习的方法,发表在2012年TIP-Full reference type video quality assessment method based on statistical and machine learning methods, published in the 2012 TIP
-
-
1下载:
将基于统计学习理论中的支持向量机(SVM)应用到目标跟踪领域中"该算法不仅能够自动检测和跟踪视场或图像中预先设定好的目标,而且克服了传统目标跟踪系统的缺陷.-Will be based on statistical learning theory, support vector machine (SVM) is applied to the target tracking in "The algorithm can automatically detect and track field of
-
-
0下载:
20世纪90年代,贝尔实验室的Vapnik教授第一次提出支持向量机(Support VectorMachine,SVM)的理论与基本概念。SVM方法一种基于统计学习理论(Statistical Learning Theory)的机器学习方法,它以结构风险最小化原则代替经验风险最小化原则,同时结合了机器学习、统计学习以及神经网络等方法[53]。它能够有效的提高算法的泛化能力,解决了小样本、非线性和维数高等难题,并且能够克服传统神经网络等学习算法中网络结构难以确定、收敛速度慢及训练时需要大量数据样本
-