搜索资源列表
BPC++
- Libsvm is a simple, easy-to-use, and efficient software for SVM classification and regression. It solves C-SVM classification, nu-SVM classification, one-class-SVM, epsilon-SVM regression, and nu-SVM regression. It also provides an automatic mo
Image-Classification
- 对SVM多类分类算法进行了研究,总结了不同分类算法的优缺点。接下来本文提出了基于GA(遗传算法)和KNN(K近邻)的SVM多类分类算法-The SVM multi-class classification algorithms studied, summed up the advantages and disadvantages of different classification algorithms. The next paper, based on GA (genetic algorit
oao
- 多分类问题的支持向量机源程序一对一方法 绝对可以运行-Multi-class SVM using One-Against-One decompositionoao
SVM_FACE
- 基于支持向量机的人脸检测训练集增强算法实现。根据支持向量机(support vector machine,简称SVM)~ ,对基于边界的分类算"~(geometric approach)~ 言,类别边界附近的样本通常比其他样本包含有更多的分类信息.基于这一基本思路,以人脸检测问题为例.探讨了 对给定训练样本集进行边界增强的问题,并为此而提出了一种基于支持向量机和改进的非线性精简集算法 IRS(improved reduced set)的训练集边界样本增强算法,用以扩大-91l练集并改
detect
- svm特征提取检测,用的是输入正负2类样本,opencv1.0-svm extraction test, using a Class 2 input positive and negative samples, opencv1.0
svmclasssimple
- svm简单图像分类,相信对你会很有用的哟-simple class
train
- 该函数的内容包括读入人脸数据、PCA降维,数据规格化以及训练多类SVM等功能。-This function covers the face read data, PCA dimensionality reduction, data normalization and multi-class SVM training and other functions.
01
- 的研究彩色数字图像的计算机分类识别方法并应用于古瓷片的自动分类。方法提出 了一种色彩纹理特征的提取模型,采用该模型,利用IGabor滤波器提取数字图像的色彩纹理特征, 并构造支持向量分类机(SVM)分类器组。结果实现了高准确率多类别图像的自动分类识别,并 成功应用于古瓷片的自动分类。结论色彩纹理特征提取方法将颜色与纹理进行融合,增强了数 字图像之间的特征区分能力。-Study color digital image classification and recognition m
HOG
- 为了准确地对监控场景中的运动目标进行语义上的分类, 提出了一种基于聚类的核主成分分析梯度方向直方图和二叉决策树支持向量机的运动目标分类算法.利用背景减法提取运动目标前景区域, 并识别出潜在候选运动目标.利 用提出的基于聚类的核主成分分析的梯度直方图描述子提取候选运动目标的特征, 以较低维数的数据有效地描述运动目标的有效特征. 将提取的运动目标特征输入二叉决策树支持向量机, 实现多类目标的准确分类. 通过在不同视频序列上的实验验证, 提出的算法对运动目标进行较好地分类, 而且在运算速度方面较传
SVM-Class
- 用于图像中物体的分类,识别等。如进行图像中人、车辆、手势的识别。-using for the classfication of objects in the detected image
tezhengtiqu
- 基于组合特征提取与多级SVM的轮胎花纹识别.pdf-Combination of feature extraction and multi-class SVM-based tire tread identification. Pdf
NcutClustering
- 支持向量机SVM很好的实现二类分类问题,这里用SVM实现图像分类。-Support vector machine SVM to achieve good class classification SVM realize the image classification.
libsvm-2.9
- LIBSVM是台湾大学林智仁(Lin Chih-Jen)副教授等开发设计的一个简单、易于使用和快速有效的SVM模式识别与回归的软件包,他不但提供了编译好的可在Windows系列系统的执行文件,还提供了源代码,方便改进、修改以及在其它操作系统上应用;该软件对SVM所涉及的参数调节相对比较少,提供了很多的默认参数,利用这些默认参数可以解决很多问题;并提供了交互检验(Cross Validation)的功能。该软件包可在http://www.csie.ntu.edu.tw/~cjlin/免费获得。该软
svm
- SVM平台,操作简单、易于使用的通用SVM 软件包,可以解决分类问题(包括C- SVC、n - SVC )、回归问题(包括e - SVR、n - SVR )以及分布估计(one-class-SVM )等问题,提供了线性、多项式、径向基和S 形函数四种常用的核函数供选择。-SVM platform is a simple, easy to use, versatile SVM software package can solve classification problems (including
SVM-reviewed
- 支持向量机方法中也存在着一些亟待解决的问题,主要包括:如何用支持向量机更有效的解决多类分类问题,如何解决支持向量机二次规划过程中存在的瓶颈问题、如何确定核函数以及最优的核参数以保证算法的有效性等。-Support vector machine (SVM) method also exist some problems to be solved, mainly includes: how to use support vector machine (SVM) is more effective t
PeopleDensitydll
- 视频图像的人群密度检测,多种人群密度场景下人群计数算法: 算法功能:建立图像特征和图像人数的数学关系 算法输入:训练样本图像1,2…K 算法输出:模型估计参数 ,参考图像 算法流程:1)对训练样本图像进行分块处理(算法1.1); 2)通过算法1.2,计算训练样本各个对应分块的ALBP特征归一化,再用K-means算法(可使用opencv等算法库实现,不再描述其算法),将图像块分成k(k<K)类,获取k(k<K)个聚类中心,即为参考图像; 3)对分块的图像进行与
svc
- 模式识别中的svm支持向量机方法源代码。输入训练点特征及类别,程序将求解出基于样本类别的分类条件。-Pattern recognition svm SVM method source code. Input point feature and class training program will solve the classification based on the type of sample conditions.
SVM_image_block_segment
- SVM 用于基于块划分特征提取的图像分类,主要针对一幅图片的类型进行判断,比如说是古建筑、水体、植被等。-SVM classfication for image class type, based on image block segmention.
hog_svm
- 这文件夹包含了,hog特征提取,多类SVM分类器,数据库,图像识别(This folder contains the hog feature extraction, multi class SVM classifier, database, image recognition)
sxxx
- matlab file training for student university in class