搜索资源列表
CBWH_IET_Computer-Vision
- 背景加权直方图算法(BWH)在[2]中提出了尝试 减少干扰的背景均值漂移跟踪的目标定位。然而, 在本文中,我们证明了权重分配给候选目标区域的像素 BWH是那些没有背景资料成正比,即不会引入BWH 任何新的信息,因为均值漂移迭代公式是不变的规模 改造砝码。然后,我们提出了一个校正BWH(CBWH)的公式 只转型的目标模式,但不是目标候选模型。 CBWH计划 可以有效地降低背景的干扰,在目标定位。实验 结果表明,CBWH可能会导致更快的收敛速度和更准确的定位比 通
IET_CV_SOAMST_2011
- 一个比例和方向自适应均值漂移跟踪算法(SOAMST) 提出本文所要解决的问题,如何估计的规模和方向 改变均值漂移下的目标跟踪框架。在原来的均值偏移 跟踪算法,可以很好地估计目标的位置,规模的同时, 方向的变化,不能自适应估计。考虑到图像(重量) 是来自于目标运动模型和候选模型可以代表的可能性,一个 像素属于目标,我们证明了原来的均值漂移跟踪算法可以 推导出的重量图像的零阶和一阶矩。随着零阶 矩和目标模型和候选模型之间的Bhattacharyya系数, 提出了简