搜索资源列表
网格简化
- 在三角网格重建的过程中,平坦区域可以用较少的三角形表示,而曲率较大的地方应该有更多的三角形,本程序删减平坦区域的三角形-triangular mesh in the process of redevelopment, the flat region can use smaller triangles, Curvature and the larger part should be more triangular, the deletion procedures flat triangle reg
StereoRegion1.zip
- 基于区域的立体匹配算法 本算法从两幅彩色立体图像对中提取深度信息,使用过滤器消除视差图深度估计中的不稳定性。,Region Based Stereo Matching Algorithms region based stereo matching algorithms are developed for extraction depth information from two color stereo image pair. A filter eliminating unrelia
jisuanjituxingxue
- 计算机图形学源码包括区域填充算法、裁剪算法和三视图算法-Computer graphics, source code, including the region filling algorithm, clipping algorithm and three-view algorithm
AOPointZ2Polygon
- 查询区域中包含的点数,获取点的高程,制作3D模型-Query region that contains points, access point elevation, the production of 3D models
vtkExtractVOI
- 本程序是有关vc++与vtk相结合的情况下,三维重建的效果,其中增加的对感兴趣区域的选取功能,也就是说在三维重建体绘制情况下,自己选取感兴趣区域。-This procedure is related to vc++ and vtk combination of circumstances, the effect of three-dimensional reconstruction, in which the increase in the selection of the functional
view
- 三维物体的多视口显示,计算机图形综合实验,利用多视口技术,并结合正投影和透视投影,在屏幕上绘制4个大小相同的区域。要求:4个区域内显示同一个物体-More than three-dimensional objects, as I indicated that a comprehensive experimental computer graphics, as I use more technology, in combination with orthographic projection an
3D-model-segmentation-
- 基于区域增长等算法对三维模型进行分割,实现了一篇文献中的三维模型分割算法-Region growing algorithm based on three-dimensional model such as segmentation, to achieve a three-dimensional model of the literature segmentation
CBWH_IET_Computer-Vision
- 背景加权直方图算法(BWH)在[2]中提出了尝试 减少干扰的背景均值漂移跟踪的目标定位。然而, 在本文中,我们证明了权重分配给候选目标区域的像素 BWH是那些没有背景资料成正比,即不会引入BWH 任何新的信息,因为均值漂移迭代公式是不变的规模 改造砝码。然后,我们提出了一个校正BWH(CBWH)的公式 只转型的目标模式,但不是目标候选模型。 CBWH计划 可以有效地降低背景的干扰,在目标定位。实验 结果表明,CBWH可能会导致更快的收敛速度和更准确的定位比 通
region_growing_segmentation
- 基于PCL1.7.1库,进行三维点的区域增长分割-PCL1.7.1 based code,written by c++,region growing algorithm
MultiSelect
- 测试图形进行区域选择。实际程序中的测试案例。-picture region
Color-based-region-
- 这是点云库中的,基于色彩的区域增长算法的程序。-clour-based region growing point cloud