搜索资源列表
-
0下载:
实现小波变换对图像进行压缩。先进行db1小波二层分解,然后由均匀量化算法对其进行量化实现压缩。-The realization of wavelet transform for image compression. First two db1 wavelet decomposition, and then by the uniform quantization algorithm to quantify the achievement of its compression.
-
-
0下载:
Audio watermarking based on quantization in wavelet domain
-
-
0下载:
This paper presents a new coding technique based on
contourlet transform and multistage vector
quantization. Wavelet based Algorithms for image
compression results in high compression ratios
compared to other compression techniques. Wavelets
-
-
0下载:
实现的二维小波变换源代码,并可进行分解、量化、编码、解码-Two-dimensional wavelet transform to achieve source code, and decomposition, quantization, encoding, decoding
-
-
0下载:
基于小波变换和矢量量化的人脸图象压缩,一篇论文,喜欢的可以-Based on wavelet transform and vector quantization facial image compression, a paper can look like
-
-
0下载:
(1.)二维信号的小波分解。选择一个小波和小波分解的层次N,然后计算信号s到第N层的分解。
(2)对高斯系数进行阈值量化。对于从1到N的每一层,选择一个阈值,并对这一层的高斯系数进行软阈值量化处理。
(3)二维信号的重构。根据小波分解的第N层的低频系数和经过修改的从第1层到第N层的各层高频系数计算二维信号的小波重构。
-(1) 2 d signal wavelet decomposition. Choose a wavelet and wavelet decomposition le
-
-
0下载:
一种基于小波变换和矢量量化的图像压缩算法-A method based on wavelet transform and vector quantization for image compression algorithm
-
-
0下载:
基于小波变换与矢量量化的图像压缩研究 基于小波变换与矢量量化的图像压缩研究-Based on wavelet transform and vector quantization for image compression research
-
-
0下载:
图像去噪、小波变换、对图像进行7层小波分解、对图像进行压缩:保留第一层低频信息并对其进行量化编码、图像重构-Image denoising, wavelet transform, wavelet decomposition of the image layer 7, the image compression: keep the first layer of low-frequency information and its quantization coding, image reconstr
-
-
0下载:
1 Haar Wavelets
1.1 The Haar transform
1.2 Conservation and compaction of energy
1.3 Haar wavelets
1.4 Multiresolution analysis
1.5 Compression of audio signals
1.6 Removing noise from audio signals
1.7 Notes and references
2 Daub ech
-
-
0下载:
这是利用二维小波分析对含高频噪声的图像进行消噪的例程,这里采用的是小波分解系数阈值量化法,-This is the routine use of two-dimensional wavelet analysis denoising images with high-frequency noise, the wavelet coefficients threshold quantization method used here,
-
-
0下载:
小波分析的应用是与小波分析的理论研究紧密地结合在一起地。它已经在科技信息产业领域取得了令人瞩目的成就。 电子信息技术是六大高新技术中重要的一个领域,它的重要方面是图像和信号处理。现今,信号处理已经成为当代科学技术工作的重要部分,信号处理的目的就是:准确的分析、诊断、编码压缩和量化、快速传递或存储、精确地重构(或恢复)。从数学地角度来看,信号与图像处理可以统一看作是信号处理(图像可以看作是二维信号),在小波分析地许多分析的许多应用中,都可以归结为信号处理问题。对于其性质随时间是稳定不变的信号,处理
-