搜索资源列表
plateloc
- 车牌定位使用说明 使用时打开此例题目录下pic中的图片,然后依次单击按钮“转”、“1”、“2”、“3”、“4”和“5”,就可以实现精确的车牌定位。 具体步骤 1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。 该阈值对不同牌照有一
41241
- 图象处理中运动估计的一种全搜索块匹配法的实现程序!-image processing campaign estimated a full search block matching program to realize!
zuidajiaocha
- 本程序是基于最大类间交叉熵的图象分割,它是从目标和背景的类间差异性出发, 搜索使分割后的类间差异最大的阈值。
chepaidingwei
- 一个很好的车牌定位 使用说明 使用时打开此例题目录下pic中的图片,然后依次单击按钮“转”、“1”、“2”、“3”、“4”和“5”,就可以实现精确的车牌定位。 具体步骤 1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最
数字图象处理技术
- 这是用vc++实现的数字图象处理程序,包括点运算,几何变换,图像增强,形态学变换,边缘与轮廓,图象分析,图象复原,图像编码功能. (这是我搜索到的,觉得很好,希望大家能共享)
chap12
- 使用时打开此例题目录下pic中的图片,然后依次单击按钮“转”、“1”、“2”、“3”、“4”和“5”,就可以实现精确的车牌定位。 具体步骤 1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。 该阈值对不同牌照有一定的适应性
chepaidingwei
- 很好的车牌识别代码 。具体步骤: 1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。 该阈值对不同牌照有一定的适应性,能够保证背景基本被置为0,以突出牌照区域。 4.削弱背景干扰。对图像B做简单的相邻像素灰度值相减,得到新的图像G,即Gi,j=|Pi,j-Pi,j-1|i=0
chepaidingwei
- 使用说明 使用时打开此例题目录下pic中的图片,然后依次单击按钮“转”、“1”、“2”、“3”、“4”和“5”,就可以实现精确的车牌定位。 具体步骤 1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。 该阈值对不同牌照有一定的适应性,能够保证背景基本被置为0,以突出牌照区
expio
- 进行图象优化算法的主程序,这个程序结合了全搜索和快速搜索算法
num_identify
- 1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。 该阈值对不同牌照有一定的适应性,能够保证背景基本被置为0,以突出牌照区域。 4.削弱背景干扰。对图像B做简单的相邻像素灰度值相减,得到新的图像G,即Gi,j=|Pi,j-Pi,j-
chap12
- 使用说明 使用时打开此例题目录下pic中的图片,然后依次单击按钮“转”、“1”、“2”、“3”、“4”和“5”,就可以实现精确的车牌定位。 具体步骤 1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。 该阈值对不
车牌定位
- 车牌定位系统是进行车牌自动识别的重要一部分能正确的获得整个图象的车牌部分 具体步骤 1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。 该阈值对不同牌照有一定的适应性,能够保证背景基本被置为0,以突出牌照区域。 4.削弱背景干扰。对图像B做简单的相邻像素灰度值相减,得到新的图像G,即Gi,j= Pi
whole_search_and_three-step_search
- 用matlab实现了图像通信中的全搜索算法与三步搜索算法这两种运动估值算法,给出了运动矢量图,对两种方法的计算复杂度和搜索性能进行了客观的比较。-Matlab image communication achieved by the full search algorithm in the three-step search algorithm with the two motion estimation algorithms, given the movement vector, the com
camshiftdemo
- Gary R.Bradski提出CamShift算法,即"Continuously Adaptive Mean-Shift"算法。是以颜色直方图为目标模式的目标跟踪算法,可以有效地解决目标变形和部分遮挡的问题,而且运算效率很高。在视频跟踪过程中,CAMSHIFT算法利用选定目标的颜色直方图模型得到每帧图像的颜色投影图,并根据上一帧跟踪的结果自适应调整搜索窗口的位置和大小,得到当前帧中目标的尺寸和质心位置。-Gary R. Bradski CamShift proposed algorithm,
LicensePlateRecognition
- 使用说明 使用时打开此例题目录下pic中的图片,然后依次单击按钮“转”、“1”、“2”、“3”、“4”和“5”,就可以实现精确的车牌定位。 具体步骤 1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。 该阈值对不
Image_Paper_XuXG
- 用Snake算法和基于动态规划的图搜索算法,有效地实现了复杂物体轮廓特征的提取。 -With the Snake algorithm and based on dynamic programming graph search algorithm, effective implementation of the complex features of an object contour extraction.
puzzle
- 请设计算法,使用至多4种不同颜色对七巧板进行涂色(每块涂一种颜色),要求相邻区域的颜色互不相同,打印输出所有可能的方案。 提示:可以把七巧板上的每个区域看成一个顶点,若两个区域相邻,则相应的顶点间用一条边相连,这样将七巧板转换为图,该问题实质上是一个图的搜索问题。 -Please design algorithm, using up to 4 different colors for coloring on the puzzle (each block of color coated),
Search_for_TIF
- 自己写的一个搜索TIF图片信息的程序,可以获取TIF图的CMYK,分辨率-Write a TIF image information search process, you can obtain the TIF map CMYK, resolution
PSO-image-segmentation-algorithm
- 为了提高算法的执行效率, 应用粒子群算法求取图像中任意两点间最短路径来定位目标边界, 并与经典的基于Dijkstra 动态规划图搜索的Liv e Wire 算法进行比较.-In order to improve the efficiency of the algorithm, particle swarm algorithm to strike any of images to locate the shortest path between two object boundaries, and
分散递阶蚁群算法及其在相变序列图像分割中的应用
- 提出了一种分散、递阶蚁群算法, 它将多个分散的蚁群并行求解各自对应的子问题, 形成一个执行层, 而递阶协调层利用执行层反馈的信息协调执行层的优化过程,从而得到递阶求解问题的整体最优解. 该算法已应用于相变热图序列图像模糊相变线的提取问题,即运用区域划分方法先将序列图像的分割转化为关联型多子图搜索问题,再利用分散 、递阶蚁群算法进行求解 ,结果表明该算法能很好地利用相变线的运动信息成功地解决热相变序列图像分割问题. 与蚁群算法独立搜索比较 ,分散 、递阶蚁群算法能更有效地实现多子图之间的关联.(A