搜索资源列表
ImageRegistration.rar
- 基于边缘特征的图像配准算法源码 基于边缘特征的图像配准算法是将不同时间、不同的传感器(成像设备)或不同条件下(天候、照度、摄像位置和角度等)获取的同一场景的两幅或多幅图像根据其边缘特征进行匹配、叠加的处理,最终生成一幅全景图像的方法。该方法具有抗噪性强,匹配速度快,误匹配率低,适用于多种类型的图像等优点,主要可以运用于以下领域: (1)军事研究领域,如飞行器辅助导航系绞、武器投射系统的末制导以及寻地等应用研究; (2)医学图像分析,如数字剪影血管造影DSA血管造影术、肿瘤检测、白内障检测、
1
- 自适应核密度估计运动检测方法 提出一种自适应的核密度(kernel density estimation, KDE)估计运动检测算法. 算法首先提出一种自适应前景、背景阈值的双阈值选择方法, 用于像素分类. 该方法用双阈值能克服用单阈值分类存在的不足, 阈值的选择能自适应进行, 且能适应不同的场景. 在此基础上, 本文提出了基于概率的背景更新模型, 按照像素的概率来更新背景, 并利用帧间差分背景模型和KDE分类结果, 来解决背景更新中的死锁问题, 同时检测背景的突然变化. 实验证明了所提出
03
- 真实场景下视频运动目标自动提取方法.主要的研究内容包括运动物体检测,分类和跟踪,研究成果可以广泛地应用在交通管理系统,视频监视系统和军事目标跟踪系统,同时还可以应用在基于内容的视频数据压缩编码中。-Real video scenes under the automatic extraction method of moving targets. The main content includes moving object detection, classification and tracki
Recognition
- 運動識別 在摄像机监视的场景范围内,对出现的运动目标进行检测、分类及轨迹追踪,可应用于各种监控目的,如周界警戒及入侵检测、绊线检测、非法停车车辆检测等。-Movement Recognition ' scene in the scope of surveillance cameras, the emergence of the moving target detection, classification and tracking, monitoring can be applied
lbp(1)
- 是一种纹理描述算子用于快速提取图像的纹理特征,应用于医学图像检索,场景分类等.-Is a texture descr iption operator for rapid extraction of texture features, used in medical image retrieval, scene classification.
codetsu.tar
- 作者:Li-Jia Li, Richard Socher and Li Fei-Fei. 将分类 分割 注释结合起来处理场景分析的源代码-Source code for Towards Total Scene Understanding:Classification, Annotation and Segmentation author:Li-Jia Li, Richard Socher and Li
HOG
- 为了准确地对监控场景中的运动目标进行语义上的分类, 提出了一种基于聚类的核主成分分析梯度方向直方图和二叉决策树支持向量机的运动目标分类算法.利用背景减法提取运动目标前景区域, 并识别出潜在候选运动目标.利 用提出的基于聚类的核主成分分析的梯度直方图描述子提取候选运动目标的特征, 以较低维数的数据有效地描述运动目标的有效特征. 将提取的运动目标特征输入二叉决策树支持向量机, 实现多类目标的准确分类. 通过在不同视频序列上的实验验证, 提出的算法对运动目标进行较好地分类, 而且在运算速度方面较传
SC_demo
- 整理图像特征点提取和分类的程序(可以作为场景分类的前期工作),自己调试过能运行,特征点提取用的SIFT算法,使用K-means聚类算法,将得到的20个聚类中心写入txt文本中-Finishing the image feature point extraction and classification procedures (which can be as the preparatory work of the scene classification), their own debugging
SceneClasification
- 用于场景分类的代码,特征是事先提取好的,用PHOG特征-For scene classification code, characterized in that prior extraction good PHOG characterized
5
- 了适应跟踪过程中目标光照条件的变化,并对目标特征进行在线更新,提出一种将局部二元模式(LBP) 特征与图像灰度信息相融合,同时结合增量线性判别分析对目标进行跟踪的算法.跟踪开始前,为了获得比较准确的目标描述,使用混合高斯模型和期望最大化算法对目标进行分割;跟踪过程中,通过蒙特卡罗方法对目标区域和背景区域进行采样,并更新特征空间参数.得到目标和背景的最优分类面;最后使用粒子滤波器结合最优分类面对目标状态进行预测.通过光照变化的仿真视频和自然场景视频的跟踪实验,验证了文中算法的有效性.-Trac
dbimagefusion
- 自己编的小波图像融合代码 直接matlab可以运行-----------------图像融合以图像作为研究和处理对象,是一种综合多个源图像信息的先进图像处理技术,它把对同一目标或场景的多重源图像根据需要通过一定的融合规则融合成为一幅新图像,在这一幅新图像中能反映多重源图像中的信息,以达到对目标或场景的综合描述,以及精确的分析判断,有效地提高图像信息的利用率、系统对目标探测识别的可靠性及系统的自动化程度。其目的是集成多个源图像中的冗余信息和互补信息,以强化图像中的可读信息、增加图像理解的可靠性等。
gmm
- 混合高斯模型使用K(基本为3到5个) 个高斯模型来表征图像中各个像素点的特征,在新一帧图像获得后更新混合高斯模型,用当前图像中的每个像素点与混合高斯模型匹配,如果成功则判定该点为背景点, 否则为前景点。通观整个高斯模型,他主要是有方差和均值两个参数决定,,对均值和方差的学习,采取不同的学习机制,将直接影响到模型的稳定性、精确性和收敛性。由于我们是对运动目标的背景提取建模,因此需要对高斯模型中方差和均值两个参数实时更新。为提高模型的学习能力,改进方法对均值和方差的更新采用不同的学习率 为提高在繁忙
changjingshibiefenlei
- 本文件是图像场景识别并进行分类的程序,已运行成功。 分别利用1 tiny image描述和最近邻分类器 2 bags of sifts描述和最近邻分类器 3bags of sifts描述和线性svm分类器进行场景分类识别的。 在主程序proj3中将FEATURE 改成tiny image,CLASSIFIER 改成nearest neighbor,注释其他FEATURE 和CLASSIFIER的选择就可以实现第一种场景分类识别:tiny image描述和最近邻分类器。以此类
Moving-Target-Detection-Method-
- 针对成像平台运动情况下的运动目标检测问题,提出了一种从特征点稀疏运动场估计到运动分类的目标检测算法。 首先通过快速特征点检测与跟踪恢复出图像稀疏运动场;然后依据特征点之间运动一致性关系实现属于同一运动模式的特征 点分类,根据分类得到的各组特征点计算场景图像重建误差,剔除重建误差最小的特征点组,实现对前景目标的检测。仿真实 验对该算法在复杂场景中检测运动目标的有效性进行了验证。-】In order to detect target in the background motion vi
proj4
- 使用滑动窗的人脸检测,滑动窗口能够独立地对图片块进行分类,以确定是否属于被检测目标。内容如下: 1)载入正样本训练集(人脸),并将其转化为HoG特征 2)载入负样本训练集(没有人脸的任意场景),也将其转化为HoG特征 3)使用SVM,对分类器进行训练,训练集包括正训练集和负训练集 4)使用训练好的分类器,在不同的尺度上,对测试集进行分类 -Face detection with a sliding window.
BoV
- 一种场景分类的介绍,利用的是bag of visual words思想。-Introduction of a classification, using bag of visual words.
Colorhist_Libsvm_dem
- 随着科学技术的飞速发展,机器学习与人工智能技术的不断创新,人们对特定信息检索的需求逐渐增加,使得如何对资源进行合理有效的分类成为一个关键问题。近几年来,基于内容的图像分类的研究焦点主要集中在自然图像的场景分类和物体分类两个方面,大多采用有监督学习方法,通过对底层特征建模和中间语义分析来实现分类。 本文基于Libsvm的图像分类研究及实现,主要针对的是物体分类这一方面,选用了五类水果作为分类研究的对象。对图像进行分类的大体步骤主要包括采集图像样本(主要从Web上获取)、图像预处理(如截成大小一致