搜索资源列表
plateloc
- 车牌定位使用说明 使用时打开此例题目录下pic中的图片,然后依次单击按钮“转”、“1”、“2”、“3”、“4”和“5”,就可以实现精确的车牌定位。 具体步骤 1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。 该阈值对不同牌照有一
ppp8
- 程序代码说明 P0801:索书号文字图像分割 P0802:粘连字符切分 P0803:文字识别 P0804:彩色车牌分割 P0805:商标文字分割-code P0801 Note : Call text image segmentation P0802 : Character Segmentation P0803 : Character Recognition P0804 : color plates separated P0805 : Property Text Segmen
chap8
- 程序代码说明 P0801:索书号文字图像分割 P0802:粘连字符切分 P0803:文字识别 P0804:彩色车牌分割 P0805:商标文字分割 Recognition:文字识别的识别子函数 StrDetect01:文字识别的结构特征提取子函数
chepaidingwei
- 一个很好的车牌定位 使用说明 使用时打开此例题目录下pic中的图片,然后依次单击按钮“转”、“1”、“2”、“3”、“4”和“5”,就可以实现精确的车牌定位。 具体步骤 1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最
wenzituxiangshibie
- P0801:索书号文字图像分割 P0802:粘连字符切分 P0803:文字识别 P0804:彩色车牌分割 P0805:商标文字分割 Recognition:文字识别的识别子函数 StrDetect01:文字识别的结构特征提取子函数
matlab
- 一个matlab做的图象处理程序. P0801:索书号文字图像分割 P0802:粘连字符切分 P0803:文字识别 P0804:彩色车牌分割 P0805:商标文字分割 Recognition:文字识别的识别子函数 StrDetect01:文字识别的结构特征提取子函数
chap12
- 使用时打开此例题目录下pic中的图片,然后依次单击按钮“转”、“1”、“2”、“3”、“4”和“5”,就可以实现精确的车牌定位。 具体步骤 1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。 该阈值对不同牌照有一定的适应性
chepaidingwei
- 很好的车牌识别代码 。具体步骤: 1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。 该阈值对不同牌照有一定的适应性,能够保证背景基本被置为0,以突出牌照区域。 4.削弱背景干扰。对图像B做简单的相邻像素灰度值相减,得到新的图像G,即Gi,j=|Pi,j-Pi,j-1|i=0
chap8
- P0801:索书号文字图像分割 P0802:粘连字符切分 P0803:文字识别 P0804:彩色车牌分割 P0805:商标文字分割 Recognition:文字识别的识别子函数 StrDetect01:文字识别的结构特征提取子函数
chap8
- 程序代码说明 P0801:索书号文字图像分割 P0802:粘连字符切分 P0803:文字识别 P0804:彩色车牌分割 P0805:商标文字分割 Recognition:文字识别的识别子函数 StrDetect01:文字识别的结构特征提取子函数
chepaidingwei
- 使用说明 使用时打开此例题目录下pic中的图片,然后依次单击按钮“转”、“1”、“2”、“3”、“4”和“5”,就可以实现精确的车牌定位。 具体步骤 1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。 该阈值对不同牌照有一定的适应性,能够保证背景基本被置为0,以突出牌照区
num_identify
- 1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。 该阈值对不同牌照有一定的适应性,能够保证背景基本被置为0,以突出牌照区域。 4.削弱背景干扰。对图像B做简单的相邻像素灰度值相减,得到新的图像G,即Gi,j=|Pi,j-Pi,j-
chap8
- 程序代码说明 P0801:索书号文字图像分割 P0802:粘连字符切分 P0803:文字识别 P0804:彩色车牌分割 P0805:商标文字分割 Recognition:文字识别的识别子函数 StrDetect01:文字识别的结构特征提取子函数
chap12
- 使用说明 使用时打开此例题目录下pic中的图片,然后依次单击按钮“转”、“1”、“2”、“3”、“4”和“5”,就可以实现精确的车牌定位。 具体步骤 1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。 该阈值对不
车牌定位
- 车牌定位系统是进行车牌自动识别的重要一部分能正确的获得整个图象的车牌部分 具体步骤 1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。 该阈值对不同牌照有一定的适应性,能够保证背景基本被置为0,以突出牌照区域。 4.削弱背景干扰。对图像B做简单的相邻像素灰度值相减,得到新的图像G,即Gi,j= Pi
LicensePlateRecognition
- 使用说明 使用时打开此例题目录下pic中的图片,然后依次单击按钮“转”、“1”、“2”、“3”、“4”和“5”,就可以实现精确的车牌定位。 具体步骤 1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。 该阈值对不
chap8
- P0801:索书号文字图像分割 P0802:粘连字符切分 P0803:文字识别 P0804:彩色车牌分割 P0805:商标文字分割 Recognition:文字识别的识别子函数 StrDetect01:文字识别的结构特征提取子函数 -P0801: Call Number text image segmentation P0802: adhesion character segmentation P0803: Character Re
LetterImageRecognition
- 文字图像识别:索书号文字图像分割;粘连字符切分;文字识别;彩色车牌分割;商标文字分割;文字识别的识别子函数;文字识别的结构特征提取子函数-Letter Image Recognition: Call Number Letter image segmentation adhesion character segmentation language recognition color license plate segmentation trademark characters segmen
tuxiang
- 关于图像处理的程序。包括彩色车牌分割,商标文字分割-On image processing procedures. Including the division of color plates, trademarks, text segmentation
yOlRRII9
- 彩色文字源码,易语言写的图形图像编程,很好的参考。-Color text source, easy graphic language programming, a good reference.