搜索资源列表
PCA
- 主成分分析方法(PCA),PCA算法的理论依据是K-L变换,通过一定的性能目标来寻找线性变换W,实现对高维数据的降维。
PCA
- PCA算法主要用于提取高维特征,可以将图像这种高位数据降维成为低维向量-PCA algorithm
PCA_MATLAB
- PCA(主成分分析)的MATLAB源代码,包含测试例子及使用文档,该算法主要用于图像分类时特征的降维。-PCA (Principal Component Analysis) of the MATLAB source code, including test case and use the document, the algorithm is mainly used for image classification and feature dimensionality reduction.
shiyuan
- 是一个基于opencv的人脸识别的程序。采用的是lda和pca降维的算法,来达到高精度的识别程序-Opencv face recognition program is based. Lda PCA dimensionality reduction algorithm to achieve high-precision recognition program
PCA_based-Face-Recognition-System
- PCA算法实现,基于PCA的人脸识别程序,可以降维预处理图像-PCA algorithm, the PCA-based face recognition program, dimensionality reduction pretreatment images
pca
- pca算法实现,实现了一个数据降维方面的经典算法PCA-pca algorithm to achieve a data classic dimensionality reduction algorithm PCA
pca
- pca算法已经广泛应用于各方面,当提取的图像特征维度比较高时,为了简化计算量以及储存空间,需要对这些高维数据进行一定程度上的降维,并尽量保证数据的不失真。-pca algorithm has been widely used in various areas, when the extracted image feature dimension is relatively high, in order to simplify the calculation and storage space n
face_recognition
- 1. 本程序使用PCA算法对训练图像降维,得到特征图像; 2. 将每一幅图片与平均图像的差值投影到特征向量空间; 3. 计算训练图片投影两两之间的最大欧氏距离distance_max; 4. 将测试图片也投影到特征向量空间,计算它与所有训练图像投影的最小欧氏距离distanceST_min。 5. 设定判别阈值(设为0.3*distance_max,此为测试得到的经验值,不同阈值将影响判别结果)。当distanceST_min>0.3*distance_max时,则认为测试
dimen_toolbox
- 最新最强MATLAB降维工具箱,可用于人脸识别,模式识别,机器学习,数据挖掘,图像处理等领域,里面包含的算法有PCA,LDA,KPCA,KLDA,Laplacian,LPP,MDS,NPE,SPE,LLC,CFA,MCML,LM-The latest and greatest dimension reduction MATLAB toolbox can be used for face recognition, pattern recognition, machine learning, dat
chengxu
- pca-提取主成分,降维,压缩图像数据量,简化下一步的处理; 小波检测—该程序通过小波系数的提取、重构检测出图像的边缘; 其它的均为图像分割的代码,包含形态学分水岭的一些算法,与Ostu等算法。-pca-extraction of principal components, reduce dimensions, compress image data, to simplify further processing Wavelet detection- the program b
PCA-LDA-FaceRecognization
- 基于PCA-LDA的人脸识别算法。用PCA降维,LDA进行分类-PCA-LDA FaceRecognization
histeq
- 主成分分析算法(PCA),可用于降维,也可用于处理图像相关性问题,提取主成分,分析图像细节信息和主要成分,用于图像压缩也可以-Principal component analysis algorithm (PCA), can be used for dimensionality reduction, can also be used to process images related issues, extracted principal component analysis and main
pca
- 人脸搜索简单实现,使用主成分分析算法(PCA),依赖opencv,对若干张人脸图片进行PCA降维处理,然后将输入人脸图片与降维后的数据做比较,根据权重输出结果,权重越大则人脸越相似-Simple face search, using the principal component analysis (PCA) algorithm, opencv, for a number of face images for PCA dimension reduction, and then the input
PCA-LDA-LPP-SLLDA
- 图像降维的经典算法PCA,LDA,LPP,SLLDA程序,包含掌纹库,可以直接解压运行-The classic image dimensionality reduction algorithm of PCA, LDA, LPP, SLLDA program that contains palmprint , can direct decompression operation
pca_test1
- PCA降维技术的原理和具体代码实现过程,深入的了解其算法流程-PCA dimension reduction technique principles and specific code implementation process, in-depth understanding of its algorithm flow
PCA
- 高光谱图像PCA算法(注释详尽) 将传统的PCA算法应用于高光谱遥感中,实现光谱图像的数据降维-PCA algorithm for hyperspectral image The traditional PCA algorithm is applied to hyperspectral remote sensing, the realization of spectral image data dimensionality reduction
bhtsne-master
- tsne 快速降维算法 效果好于PCA 算法-tsne fast dimensionality reduction algorithm is better than PCA algorithm
K-Means PCA降维
- K-Means算法,不要求建立模型之后对结果进行新的预测,没有相应的标签,只是根据数据的特征对数据进行聚类。主成分分析降维对数据进行可视化操作,对features进行降维.(K-Means algorithm does not require the establishment of the model after the new prediction of the results, there is no corresponding tag, but only on the character
PCA
- 非常经典的特征提取算法,经常用来做降维方法,但是也可以直接用来做特征提取,很适合图像处理入门,在人脸识别也经常用到(Very classic feature extraction algorithm, often used to do dimensionality reduction methods, but can also be used directly to do feature extraction, it is suitable for image processing, in fa
PCA 和ICA
- 主成分分析和独立成分分析算法,可用于数据降维