搜索资源列表
GLCM--texture-extraction
- 对图像的纹理特征进行提取,主要基于灰度共生矩阵,然后计算二次统计量(即特征)-Texture features for image extraction, mainly based on gray level co-occurrence matrix, and then calculate the amount of secondary statistics (ie features)
Texture
- 用灰度共生矩阵对共生矩阵归一化和计算能量、熵、惯性矩、相关4个纹理参数。-On the symbiosis with the GLCM matrix normalization and calculation of energy, entropy, moment of inertia, related to four texture parameters.
Textural_defect_detection_based_on_label_co-occurr
- 基于类别共生矩阵的纹理疵点检测方法 邹超 朱德森 肖力 摘要:根据有规则纹理的特点,提出了基于类别的共生矩阵来描述纹理特征,从而很好地将正常纹理与疵点区分开。分析了传统的灰度共生矩阵在计算纹理特征时计算量大,且分辨能力差的缺点.为了克服灰度共生矩 阵在计算量和分辨能力上的缺点,定义了类别共生矩阵.在类别共生矩阵的算法中,首先学习纹理的一些基本特征以确定类别共生矩阵的一些关键参数。如纹理的概率密度分布、纹理的主方向和周期,以及分类准则等重要参数,然后计算类别共生矩阵并提取白疵点增强、黑疵
ImageRetrievalAlgorithm
- 文是一种基于灰度共生矩阵的图像相似性检索算法,首先将图像分成互不重叠的子图像块,根据子图像 块中像素间灰度差别重新设置每个像素的灰度值为0或l,然后将整个图像重新划分成子块,对子块编码,最后借 助共生矩阵提取的不同方向的特征值来检索图像的相似性。实验结果表明本文算法对图像相似性的检索比传统 方法GLCM、CCM更有效,且检索效率较高,更重要的是此算法还可以反应不同方向上图像的相似度。-Man is an image based on gray level co-occurrence
Calculates-cooccurrence-matrix
- 灰度共生矩阵的MATLAB实现,为调用子函数的源码。-GLCM MATLAB implementation of the source code for the subroutine call.
GrayGradinet
- 非常经典的灰度共生矩阵改进代码,灰度梯度共生矩阵-Very classic GLCM improve the code, shades of gray co-occurrence matrix
graycomatrix
- 计算灰度共生矩阵的Matlab程序,提取图像灰度共生矩阵- glcm image segmentation matlab GLCM program segmentation glcm GLCM Matlab Code image segmentation GLCM matrix
glcm
- 利用灰度共生矩阵提取纹理特征图像,证明了灰度共生矩阵提取的纹理特征对图像分类精度起到了提高的作用-Gray Level Co-occurrence matrix extraction method is more important texture feature extraction method, using matlab realize the
gray-matrix
- 用matlab编写的关于灰度共生矩阵的源代码,对于纹理特征的研究有重要意义。-Written using matlab the GLCM source code is important for the study of texture features.
wenli
- 基于灰度共生矩阵纹理特征提取,d=1,θ=0°,45°,90°,135°共四个矩阵-Based on GLCM texture feature extraction, d = 1, θ = 0,45,90,135 of four matrix
GrayCoProps_LJT
- matlab图像处理:输入影像矩阵原始的其中某一波段或降维后的某一维矩阵,输出该影像矩阵的灰度共生矩阵。具体函数说明内附。-matlab image processing: the original input image matrix in which a band or a certain dimension after dimension reduction matrix output GLCM the image matrix. Specific function instruction
GrayLevelCoMatrix
- 计算灰度共生矩阵,本程序可以计算任意偏移角度和距离的弧度共生矩阵,同时经过测试,比matlab自带graycomatrix计算结果更准确。-Calculation GLCM, this program can be calculated at any angle and radian offset distance co-occurrence matrix, while tested, than matlab graycomatrix comes more exact calculations.
GLCM
- 灰度共生矩阵建立在估计图像的一阶组合条件概率密度函数的基础上, 其通过计算图像中有一定距离和一定方向的两点之间灰度的相关性, 反映图像在方向、间隔、变化幅度及快慢上的综合信息。-The GLCMs are stored in a i x j x n matrix, where n is the number of GLCMs calculated usually due to the different orientation and displacements used in the alg
Cloud-detection-
- 首先使用灰度共生矩阵提取图像纹理特征,之后使用灰度共生矩阵的熵值与相关性系数作为纹理参数,用k-means聚类算法实现遥感图像的云检测-First of all, the gray co-occurrence matrix is used to extract the image texture features, then the entropy and correlation coefficients of the GLCM are used as texture parameters, a
GLCM.tar
- 输入一张图片的mat矩阵,生成四个不同方向的灰度共生矩阵特征值!(Four gray co-occurrence matrix eigenvalues are generated in different directions)
灰度共生矩阵GLCM
- 详细的基于纹理的图像分割算法 灰度共生矩阵实现代码,实现效果比较满意(Detailed texture based image segmentation algorithm, gray co-occurrence matrix implementation code, to achieve satisfactory results)
GLCM method to extract features
- 实现灰度共生矩阵特征提取,对图像的纹理分析有用。(The gray level co-occurrence matrix feature extraction, useful for image texture analysis.)
GLCM
- 模式识别,纹理分析,灰度共生矩阵,统计图像的灰度共生矩阵进行纹理分析(Pattern recognition, texture analysis, gray level co-occurrence matrix, Texture analysis based on gray level co-occurrence matrix of statistical image)
GLCM
- 该程序可以准确地计算图像的灰度共生矩阵中的各项数值。(it can calculate various parameters of Gray-level co-occurrence matrix for an image)
glcm
- ??为了能更直观地以共生矩阵描述纹理状况,从共生矩阵导出一些反映矩阵状况的参数,典型的有以下几种(In order to describe the state of texture with a symbiotic matrix more intuitively, some parameters reflecting the matrix condition are derived from the symbiotic matrix, typical of the following sever