搜索资源列表
image(PCA)
- 这是介绍应用主成分分解(PCA)法的图像融合技术的论文,出自万方数据库。
rendring2006
- 一份retinex算法的code,其中利用pca 做 色度分解,利用改进的bilateral滤波器进行低频和高频分解
rpca
- RobustPCA 是最近提出的一种非常新的图像矩阵分解算法,该算法具有对噪声不敏感、能处理高维图像数据的特点。这是论文作者提供的 MATLAB 实现代码。-Oct 2009 This matlab code implements the augmented Lagrange multiplier method for Robust PCA.
wt_pca
- matlab实现的小波分解和pca结合的人脸识别算法,识别率较好-matlab implementation of wavelet decomposition and pca combination of face recognition algorithms, a better recognition rate
PCA
- 关于PCA图像融合的详细资料,像素级图像融合技术的研究与进展,应用主成分分解PCA法的图像融合技术-The pca image details of the integration of the image of a united and progress, the application of the main ingredients into the image of technology convergence pca
medicalcengshu
- :根据小波低频子带图像的轮廓模糊度和高频子带图像的细节信息量随小波分解层数增多而增多的规律,从图像熵 出发,提出了一种基于低频子带图像熵差的最佳小波分解层数选择法, 该方法通过计算不同分解层数下各低频子带的图像 熵差,选择最接近原始图像熵差的分解层数作为最佳分解层数。用多种基于小波变换的图像融合法分别对两组医学图像进 行仿真实验,结果表明根据该分解层数选择法得到的融合图像目视效果最好,与相关系数、峰值信噪比、模糊Chebyshev 距离 值等客观评价指标保持了很好的一致性。
PCAbased-Laplacian-pyramid
- 本文阐述了基于主元分析的拉普拉斯金字塔图像融合的原理和方法:首先对原图像分别进行拉普拉斯 金字塔分解,然后分别对高频部分采用主元分析(PCA)法融合,对低频部分采用平均梯度法进行融合,最后对 拉普拉斯金字塔做反变换得到最终的融合图像。通过对可见光与红外图像的融合,以及对不同焦距图像融合 的结果分析,该算法比单纯的PCA和拉普拉斯图像融合能得到具有更多有用信息的高对比度的融合图像-In this paper, principal component analysis based on
zuijinlinfenlei
- 我们使用MATLAB软件实现了人脸识别并统计其识别率。本实验采用PCA(主成分分析)方法,利用K-L变换和奇异值分解原理实现。并分别采用最近邻法分类器得出它们的成功率。-We use face recognition software and the MATLAB Statistics recognition rate. The present study, PCA (principal component analysis) method, using KL transform and sin
NMF1
- 非负矩阵分解和PCA有相同之处,但是具有更好的物理意义。-NMF and PCA have in common, but with better physical meaning.
PCAfusion
- 用PCA方法实现的图像融合程序,对图像进行了主成分分解-image fusion using the PCA method
CodesaImages
- 用于指纹检测等,利用图像的梯度方向,获得局部主导方向。Principal Component Analysis (PCA),包含有高斯金字塔分层,SVD奇异值分解,内含测试图像-Used for fingerprint detection, etc. Using the gradient direction of image to get local leading direction. Principal Component Analysis (PCA), contains a gaussi
pcaimage
- 对二维灰度图像进行PCA分解,N是分解的个数,要求图像必须大小一致-Process the image with PCA.It is a good measure.
PCA_K
- PCA的思想为将图像的协方差矩阵分解,获得分解后的方向向量。然后将数据分别投影到某一个方向上去,获得与原图象近似的图像。当然,与最大特征值所对应的特征向量方向获得最好的图像。因此,PCA方法可以作为降维的一种方法。留下在某些方向较好的图像,而抛弃那些在另外一些方向上不好的图像。-PCA ideas as to decompose the covariance matrix of the image, the direction vector obtained after decompositio
code
- 脉冲耦合神经网络PCNN,主成分分析PCA,NSCT分解和重构(Using MATLAB to Realize Pulse Coupling Neural Network PCNN, Principal Component Analysis PCA, NSCT Decomposition and Reconstruction)
pcadenoise
- 矩阵 pca或者低秩方法去噪,利用svd分解,实现对图像矩阵的去噪,该方法支持对rgb图像的去噪。使用代码请 文章中表明出处,感谢。 感谢重庆市研究生科研创新项目支持,项目号CYS16183(image denoise by low-rand regularizer or pca method. the low rank is evaluted by svd, and this method is also support for rgb image.)
test
- 该方法利用人脸具有镜像对称的自然特性,依据奇偶分解原理,生成成镜像奇、偶对称样本,井利用人脸对称图像作为训练样本,再利用主分量分析(PCA)对训练样本进行二阶相关和降维处理,然后对处理后的样本进行ICA特征提取。理论和分析实验证明,该算法有效减线了人脸受到视角、光照、人脸表情、姿势变化等因素的最响,又增加了训练样本容量,减少了计算复杂度,同时有效解决了小样本问题,提高了识别率.(The method uses the natural characteristics of mirror symme
PCA
- 1、读入图片,根据PGN格式的line 2 确定矩阵的大小为 28*28=784,根据line4 获取. 2、读入图片,根据PGN格式的line 2 确定矩阵的大小为 28*28=784,根据line4 获取。 3、计算平均矩阵。 4、对平均值矩阵进行SVD: 5、平均矩阵进行SVD后的前20个singular vector的输出结果。 6. 将训练集的每一张图片当成一行,形成一个矩阵,然后对矩阵进行PCA分解。 7. 这个矩阵对测试集的每张图片进行降 维,得到的图像。(1, rea
pcaeig
- 实现降维,提取特征,本程序是为了实现特定图片的分类,使用pca降维,然后提取出特征,那就可以使用分类器分类(Realization of dimensionality reduction and feature extraction)
ATGP
- 主要是关于高光谱图像中混合像元分解的方法(It is mainly about the decomposition method of mixed pixels in hyperspectral image)