搜索资源列表
detection
- 随着生产和工艺的进步,人们对产品的质量要求越来越高,基于机器视觉的在线 检测系统成为一种重要的质量控制手段。本文对应用于宽幅面、高精度的基于分布式 机器视觉的产品表面缺陷在线检测理论与算法进行了研究,并在此基础上以印刷品和 浮法玻璃的缺陷检测为例,完成了模式产品和非模式产品的缺陷在线检测系统。-With the progress of production and technology, people are increasingly demanding high quality p
vison
- 基于机器视觉的强化木地板表面瑕疵检测方法研究,一篇不错的优秀硕士毕业论文-Machine vision-based laminate flooring surface defect detection method, a good quality master' s thesis
surfacedetection
- 基于图像处理技术的表面缺陷自动检测系统的研究-Based on image processing technology, automatic surface defect detection system
bandaigangguangxuexitong
- 为满足钢板表面缺陷在线检测系统宽幅面、高速、高分辨率的检测要求, 优化设计了钢板表面缺陷视觉检测系统的 光学部分。采用了一种新型LED 线光源获得高强度均匀照明, 多线阵CCD 拼接成像完成幅面分割。明、暗域相结合的成像 模式确保了大部分缺陷的有效检出。综合考虑光源、镜头与线阵CCD 的影响, 计算并优化选取了光学镜头的焦距、f 数和视 场角等参数以满足检测需要, 整个光学系统设计满足在线检测需要并在样机中得以应用-To meet the steel surface defect o
surface-quality-detection
- 用matlab实现的表面质量检测的程序,主要检测图像缺陷,并标示出缺陷位置,工业生产过程中亦都有用。-Using matlab to achieve the surface quality inspection procedures, the main defect detected image, and mark the location of the defect, the industrial production process also has a use.
BDLDAPCA
- 2DPCA用于热轧带钢的表面缺陷识别的matlab程序,这相对于PCA及单PCA来说有显著的的识别率提高-2DPCA for hot-rolled strip steel surface defect recognition matlab program, which relative to the PCA and single PCA recognition rate improve
surface-defect-detection--with-edge
- 这是收集的用边缘做表面质量检测的文章,包括在带钢表面和在针织物表面的缺陷检测。对做表面缺陷检测的同学很有参考价值-There are collected articles about surface quality detection by the edge algorithm, including the detection of strip surface and defects in knitted fabric surface. It is very useful for the st
surface_inspection
- 这个是halcon表面检测的例程,可以从halcon软件中直接转为vc++和vb。缺陷检测很准确,希望对大家学习有帮助。-This is halcon surface inspection routines, the software can be directly converted from halcon vc++ and vb. Defect detection is very accurate, we want to help learning.
FixNumHole
- 表面瑕疵检测,并进行统计。形态学处理,二值化分割,标注并统计目标。-Surface defect detection, and statistics. Morphological processing, binary segmentation, annotation and statistical targets.
finish
- 对玻璃表面缺陷图像进行处理,进行分类识别(The glass surface defect image processing, classification and identification)