搜索资源列表
SVD
- 用于构造任意矩阵的奇异值分解算法,VC版
imcompress
- 基于奇异值分解(SVD)的图像压缩算法matlab实现-Based on singular value decomposition (SVD) to achieve image compression algorithm matlab
113172210SVD
- SVD随着计算机网络的不断发展,多媒体信息的版权保护问题变得十分突出,已成为一个非常紧迫的议题。数字水印技术是实现版权保护的一种非常有效的方法,已经成为信息隐藏领域的一个热门方向。本文着重讨论了数字水印技术在数字图像中的应用,特别地,对于基于神经网络和SVD的自适应的数字水印技术进行了深入的研究与实验。首先比较全面地介绍了数字水印技术的发展历史、现状、基本模型、特征、分类、现有的主要的算法和应用,并对数字水印的发展前景做出了一个展望。接着阐述了神经网络和奇异值分解( SVD)的相关理论。利用图像
backgroud-model2
- 针对传统背景建模存在的问题,文中基于低秩矩阵恢复原理,直接从视频序列中分离出前景物体和背景模型。已有低秩矩阵恢复算法的迭代计算过程中涉及大量的奇异值分解,而这些奇异值分解一般非常耗时且不够简洁,文中在非精确增广拉格朗日乘子法中引入线性时间奇异值分解算法,以得到更加有效的背景建模算法。基于 实际视频序列实验,结果表明该改进算法具有更好的建模效果和较少的运算时间。-In this paper,a novel method is present based on low-rank matrix r
svd
- 非常好用的奇异值分解的水印算法,值得学习,建议学习一下-Watermarking algorithm is very easy to use singular value decomposition
full SVD
- 利用矩阵的完全奇异值分解,进而运用奇异值阈值算法进行求解