搜索资源列表
车牌识别
- 需要注意的地方: 使用VC++6.0做开发工具, 采用简单的SDI框架结构 ,一次处理一幅位图(有兴趣的可以作成MDI) 1)位图信息的数据是从左下往右下为一行,一行一行往上排的。 2)每行像素应该是4的倍数,不足的地方用空点补齐,读的时候注意跳过冗余点。 3)主要数据都存在Doc里面,BMP的主要数据存在一个由ImgData指向的BYTE型的内存空间(根据位图的大小,动态分配的)。 4)数据读进来以后,注意向内存中贴图,以保证刷新的效率。 5)程序执行流程 应用程序生成--》
200561555616250020000
- 车牌识别系统 需要注意的地方: 使用VC++6.0做开发工具, 采用简单的SDI框架结构 ,一次处理一幅位图(有兴趣的可以作成MDI) 1)位图信息的数据是从左下往右下为一行,一行一行往上排的。 2)每行像素应该是4的倍数,不足的地方用空点补齐,读的时候注意跳过冗余点。 3)主要数据都存在Doc里面,BMP的主要数据存在一个由ImgData指向的BYTE型的内存空间(根据位图的大小,动态分配的)。 4)数据读进来以后,注意向
chepaishibie
- 车牌识别源码 使用VC++6.0做开发工具, 采用简单的SDI框架结构 ,一次处理一幅位图(有兴趣的可以作成MDI) 1)位图信息的数据是从左下往右下为一行,一行一行往上排的。 2)每行像素应该是4的倍数,不足的地方用空点补齐,读的时候注意跳过冗余点。 3)主要数据都存在Doc里面,BMP的主要数据存在一个由ImgData指向的BYTE型的内存空间(根据位图的大小,动态分配的)。 4)数据读进来以后,注意向内存中贴图,以保证刷新的效率。 5)
ImageMatch
- 图像模式识别,其中的CDib类是专门用来处理与设备无关位图的类,对应于位图的结构进行读、写、读取数据指针、文件头等信息。
windows_dibapi
- DIB(Device-indepent bitmap)的与设备无关性主要体现在以下两个方面: DIB的颜色模式与设备无关。例如,一个256色的DIB即可以在真彩色显示模式下使用,也可以在16色模式下使用。 256色以下(包括256色)的DIB拥有自己的颜色表,像素的颜色独立于系统调色板。 由于DIB不依赖于具体设备,因此可以用来永久性地保存图象。DIB一般是以*.BMP文件的形式保存在磁盘中的,有时也会保存在*.DIB文件中。运行在不同输出设备下的应用程序可以通过DIB来交换图象。 DIB还可以
AdbeRdr910_zh_CN
- 这是一个有关数据结构方面的课件,详细解说了有关数据结构方面的内容-This is a data structure of the courseware, a detailed explanation of the relevant aspects of data structure. .
HCCR
- 运用仿生模式识别方法构建提取基本笔段的神经元序列覆盖手写体汉字图像, 分析笔段神经元间的拓扑性质, 将手写体汉字图像转化为具有容错表征方式的种汉字笔划类型组成的几何图形模仿人类汉字形码输人法统计具有冗余容错形状的笔划神经元类型、数量、位置、相合和相交点数量, 建立手写体汉字特征知识的数据结构表对一手写体汉字库中手写体汉字识别进行仿真实验。方法具有较强的“ 认知”手写体汉字的能力-Construction of the use of pattern recognition methods of e
tingchechang
- 栈模拟停车场,以队列模拟车场外的便道,按照从终端读入的输入数据序列进行模拟管理。每一组输入数据包括三个数据项:汽车“到达”或“离去”信息、汽车牌照号码及到达或离去的时刻,对每一组输入数据进行操作后的输出数据为:若是车辆到达,则输出汽车在停车场内或便道上的停车位置;若是车离去;则输出汽车在停车场内停留的时间和应交纳的费用(在便道上停留的时间不收费)。栈以顺序结构实现,队列以链表实现。-Stack simulation parking lot to the sidewalk outside the
data_all
- 这是一份结构健康识别的实验结果数据,对于练习用matlab作模态识别身为有用-This is a recognition of the results for structural health data for the exercises for modal identification using matlab as helpful
L200056155561i
- 车牌识别系统需要注意的地方:使用Visual C++6.0做开发工具, 使用简单易懂的SDI框架结构 ,一次处理一幅位图(有兴趣的能作成MDI)1)位图信息的数据是从左下往右下为一行,一行一行往上排的的。2)每行像素素应该是4的倍数,不足的地方用空点补齐,读的时候注意跳过冗余点。3)主要数据都存在Doc里面,BMP的主要数据存在一个由ImgData指向的BYTE型的内存空间(根据位图的大小,动态分配 -License plate recognition systems need to pay
imageFeatureIndex
- 高级数据结构大作业,基于内容的图片检索,附有使用手册、report以及测试data。-Advanced data structure operations, content-based image retrieval, with a user manual, report and test data.
Pcl_object_recognition
- 基于PCL库的图像实时识别,PCL(Point Cloud Library)是在吸收了前人点云相关研究基础上建立起来的大型跨平台开源C++编程库,它实现了大量点云相关的通用算法和高效数据结构,涉及到点云获取、滤波、分割、配准、检索、特征提取、识别、追踪、曲面重建、可视化等。支持多种操作系统平台,可在Windows、Linux、Android、Mac OS X、部分嵌入式实时系统上运行-Image library based on real-time identification PCL, PCL
P0801
- 基于图像的文本提取是增长最快的一个领域的研究领域多媒体技术。的提取文本从一个复杂的或多个彩色图像是一个具有挑战性的问题。文本数据出现在图像包含有用的信息习惯性的解释,索引和结构的图像。提取这些信息涉及到检测、定位、跟踪、提取、增强和识别的文本从一个给定的图像。-Image based text extraction is one of the fastest growing research areas in the field of multimedia technology. The ext
svmtutorial
- 支持向量机模式识别教程 教程首先介绍了VC维和结构风险最小化的概念。然后,我们描述线性可支持向量机(SVM)的可分离和不可分离的数据,通过一个不平凡的例子详细。我们描述了一个机械类比,并讨论当SVM解决方案是唯一的,当它们是全球性的。我们描述了如何实现支持向量机训练,并详细讨论了用于构造数据非线性的SVM解决方案的核心映射技术。(A Tutorial on Support Vector Machines for Pattern Recognition)
论文
- 20世纪90年代,贝尔实验室的Vapnik教授第一次提出支持向量机(Support VectorMachine,SVM)的理论与基本概念。SVM方法一种基于统计学习理论(Statistical Learning Theory)的机器学习方法,它以结构风险最小化原则代替经验风险最小化原则,同时结合了机器学习、统计学习以及神经网络等方法[53]。它能够有效的提高算法的泛化能力,解决了小样本、非线性和维数高等难题,并且能够克服传统神经网络等学习算法中网络结构难以确定、收敛速度慢及训练时需要大量数据样本
homework3
- 将二位数据投影到一维线性, LDA(Latent Dirichlet Allocation)是一种文档主题生成模型,也称为一个三层贝叶斯概率模型,包含词、主题和文档三层结构。所谓生成模型,就是说,我们认为一篇文章的每个词都是通过“以一定概率选择了某个主题,并从这个主题中以一定概率选择某个词语”这样一个过程得到。文档到主题服从多项式分布,主题到词服从多项式分布。 [1] LDA是一种非监督机器学习技术,可以用来识别大规模文档集(document collection)或语料库(corpus)