搜索资源列表
platelience
- 车牌识别系统一般包括车牌定位、车牌切分、字符识别三部分,而车牌定位是车牌识别系统的基础和前提,其准确与否直接影响着车牌识别的准确率。本文针对这一关键问题进行了研究,提取了车牌的颜色特征并结合其纹理特征、几何特征以及投影特征进行准确定位。采用HSV颜色模型,利用颜色空间距离相似度计算分割颜色;针对颜色分割后的图像,车牌区域内水平方向上具有的连续跳变的特征,采用行扫描法确定车牌的上下边界;车牌区域内垂直方向具有投影特征,采用垂直投影法确定车牌的左右边界;最后根据车牌的宽高比判断是否是真实的车牌域。实
FACE-RECOGNITION
- 此文的目的有三个:第一,当地连续均值量化变换特征是提出照明和传感器敏感操作在目标识别上。其次,注册稀疏Winnows网络分割,提出了加快原分类。最后,特点和分类相结合对于正面人脸检测任务。检测结果列 为MIT + CMU系统和BioID数据库。关于这人脸检测器,接收器操作特征曲线BioID数据库产生最好的结果公布。对于结果麻省理工学院的中央结算系统+数据库相当于国家的最先进的脸探测器。一个人脸检测算法的MATLAB版本可以从http://www.mathworks.com/matlabce
pca
- 自动人脸识别系统具有如图所示的一半框架并完成相应功能的任务。 (1)人脸图像的获取:一般来说,图像的获取都是通过摄像头摄取,氮摄取的图像可以是真人,也可以是人脸的图片或者为了相对简单,可以不考虑通过摄像头来摄取头像,而是直接给定要识别的图像。 (2)人脸的检测:人脸检测的任务是判断静态图像中是否存在人脸。若存在人脸,给出其在图像中的坐标位置,人脸区域大小等信息。而人脸跟踪需要进一步输出所检测到的人脸位置,大小等状态随时间的连续变化情况。 (3)特征提取通过人脸特征点的检测与标定可以确
MWXG742
- 信号与系统基础知识包括连续信号与模型,离散信号与模型(Basic knowledge of signals and systems including continuous signal and model, discrete signal with the model)