搜索资源列表
ocr0
- 基于人工神经网络的光学字符识别系统及硬件实现 研究了人工神经网络及光学字符识别的基本理论、一般方法: 对人工神经网络的发展、现状、理论做了深入的研究。重点研究了BP网络的原理、特点、应用方法。研究了脱机光学字符识别的方法、理论。重点研究了基于K-L变换的字符图像的特征抽取方法。 研究了基于ARM技术的嵌入式系统的构造、设计: 通过实际动手,研究了基于ARM技术的处理器的基本构造、使用方法;使用并比较了三星4510b、atmel at91rm9200芯片的性能;掌握了高频印刷
letterrecognition
- 利用BP神经网络实现字母识别;由于是新手,大家指正;-Using BP neural network implementation letter recognition are because novice, everyone correction
Gesture-Recognition-
- 本文提出一种用于手势识别的新方法,它将图像的方向直方图矢量(0Hv)与神经网络相结合。其特点在于选用 图像的方向直方图矢量作为手势的特征矢量,该特征矢量对于光线和手的平移变化具有较强的鲁棒性,这正是手势识别所要 解决的关键问题。在训练阶段,首先需要建立手势样本的特征矢量库;在识别阶段,本文选用三层BP网络作为分类器,获得 了90%以上的识别率。本文还对手势进行一定角度的旋转后的识别进行了讨论,识别结果达到预期要求。-In this paper,a new method of gest
bpshuzi
- 通过Matlab基于BP神经网络实现数字0~9的识别。首先创建50个训练样本供网络学习,根据训练样本的特点确定输入层、输出层神经元个数,并确定隐含层神经元个数,完成对BP神经网络的设计;然后将训练样本输入BP网络中,完成对网络的训练;最后通过20个测试样本测试训练完成的网络性能,并显示识别结果。-Digital recognition based on BP neural network.First according to the characteristics of th