搜索资源列表
BAG-OF-WORDS-daima-PG_SPBOW
- matlab编写的bag of words,可以对目标进行特征提取,实现目标匹配识别。-Matlab prepared bag of words, the target feature extraction, to achieve the goal of matching recognition.
bag-of-words
- bag-of-words by R. Fergus, L. Fei-Fei and A. Torralba
caltech-image-search-1.0
- 大规模图像检索的代码,matlab与c++混合编程。总结了目前图像检索领域目前主要存在的方法。通过阅读该代码,可以对于经典的“词袋”模型(bow模型)有个具体的了解,但是该代码没有提供前序的特征提取,是直接从对提取好的特征向量聚类开始的,包括了k-means,分层k-means(HKM)聚类,倒排文件的建立和索引等,该代码还提供了局部敏感哈希(LSH)方法。最后,这份代码是下面这篇论文的作者提供的, Indexing in Large Scale Image Collections: Sc
BagofWords
- 该论文在知网上付费下载,为2011年9月最新的关于Bag of Wo rds 算法的框架和基本内容,是学习bag of words算法的很好的入门参考。Bag of Words 算法是一种有效的基于语义特征提取与表达的物体识别算法, 算法充分学习文本检索算法的优点, 将图片整理为一系列视觉词汇的集合, 提取物体的语义特征, 实现感兴趣物体的有效检测与识别。-Bag of Word algo rithm is an efficient object r eco gnition alg or ith
PG_BOW_DEMO-master
- 一个用BoW|Pyramid BoW+SVM进行图像分类的Matlab Demo -Image Classification using Bag of Words and Spatial Pyramid BoW
rough-set
- 图像场景分类中视觉词包分类的应用与操作代码-Review of the bag-of-visual-words models in image scene classification
BagOfWordsDEMO
- BAG OF WORDS算法应用于图片分类。图像特征用sift算法描述,分类机利用了libsvm方法。-BAG OF WORDS algorithm is applied to image classification. Image features using sift algorithm descr iption, classification machine utilizes libsvm method.
homework3
- 将二位数据投影到一维线性, LDA(Latent Dirichlet Allocation)是一种文档主题生成模型,也称为一个三层贝叶斯概率模型,包含词、主题和文档三层结构。所谓生成模型,就是说,我们认为一篇文章的每个词都是通过“以一定概率选择了某个主题,并从这个主题中以一定概率选择某个词语”这样一个过程得到。文档到主题服从多项式分布,主题到词服从多项式分布。 [1] LDA是一种非监督机器学习技术,可以用来识别大规模文档集(document collection)或语料库(corpus)