搜索资源列表
KCluster
- 自己写K均值聚类Visual C++程序,可以运行-wrote K-means clustering Visual C program can run
K均值聚类算法
- 是模式识别中的一种分类算法,用C++编程,很实用。
K-means
- 典型的K均值聚类方法,用matlab编写,有几个文件,大家可以参考参考。-K-means clustering methods typically used matlab write, there are several files, you can refer to the reference.
AA
- ,文章采用的K均值聚类,进行图像识别,效果较好-, The article by K-means clustering, image recognition, better
Kmeans
- k均值聚类算法代码 用于模式识别等学科的编程应用-k-means clustering algorithm code for pattern recognition applications such as programming disciplines
Kjulei
- 一种K 均值的算法,是老师布置的作业,效果还不错,对IARS花聚类分析-One kind of K-means algorithm, is the teacher assignments, the results were good, the flower cluster analysis IARS
face_detection
- 基于肤色和长宽比的人脸识别程序,需要添加训练集和测试样本,采用动态K均值聚类,适用于模式识别初学者~-Need to add color and aspect ratio-based face recognition program, the training set and test samples, using dynamic K-means clustering, pattern recognition beginners ~
PointCluster
- K均值聚类法,实现k个类的识别和判决,算法效率高,实用。-K均值聚类法,实现k个类的识别和判决,算法效率高,实用。K均值聚类法,实现k个类的识别和判决,算法效率高,实用。自动检测语言 自动检测语言 中 → 英 英 → 中 中 → 日 日 → 中 .翻译结果(中 > 英)复制结果双语对照查看 K—means clustering method realizes the K class identification and decision, the algorithm has
k_algorithm
- k-均值算法(动态聚类法),在数据图像及模式识别,经济,社会学得到广泛应用的算法-k-means algorithm (dynamic clustering method), a widely used algorithm in the data image and pattern recognition, economic, sociological
classification
- 一些典型的模式分类及聚类方法 包括k均值 FDA PCA LMS 贝叶斯 K近邻-The typical pattern classification and clustering methods including k-means FDA PCA LMS Bayesian K-nearest neighbor
K-means
- 模式识别算法程序 K均值算法 主要是实现了K均值聚类分析算法,能够实现对图像的自动分类和识别。-Pattern recognition algorithm K-means algorithm K-means clustering analysis algorithms can achieve automatic image classification and identification.
k
- 模式识别课程设计,K均值聚类,C语言代码-C progress
KMATH
- MATLAB实现K均值聚类,自己编的,可用,不用系统函数。-MATLAB realization of K-means clustering, own, use, instead of the system functions.
AP
- AP聚类算法是基于数据点间的 信息传递 的一种聚类算法。与k-均值算法或k中心点算法不同,AP算法不需要在运行算法之前确定聚类的个数。AP算法寻找的 examplars 即聚类中心点是数据集合中实际存在的点,作为每类的代表-AP clustering algorithm is based on the information transfer between data points of a clustering algorithm. K- and k-means algorithm
k_means
- k均值聚类 是一种最基础的聚类方法,就是把看起来最集中,最不分散得到标签分配到输入训练样本中去,求局部最优解。-k-means clustering is one of the most basic clustering method is to look the most concentrated, most non-dispersible label assigned to obtain input to the training sample, find local optima.