搜索资源列表
-
0下载:
pca算法的matlab实现 主成分分量分析可用于数据的降维和模式识别问题 -pca algorithm matlab component analysis to achieve the principal component can be used for data dimensionality reduction and pattern recognition problem
-
-
2下载:
lda 源码。用来为数据降维,使得识别率有所提高。-lda source code. Is used for data dimensionality reduction, making the recognition rate increased.
-
-
4下载:
用于特征降维,特征融合,相关分析等多元数据分析的典型相关分析Matlab代码实现。-For feature reduction, feature fusion, correlation analysis, multivariate data analysis, canonical correlation analysis of Matlab code implementation.
-
-
2下载:
用于特征降维,特征融合,相关分析等多元数据分析的鉴别型典型相关分析(DCCA)Matlab代码实现。-For feature reduction, feature fusion, multivariate data analysis and correlation analysis based identification of canonical correlation analysis (DCCA) Matlab code implementation.
-
-
1下载:
用于特征降维,特征融合,相关分析等多元数据分析的广义典型相关分析(GCCA)Matlab代码实现。-For feature reduction, feature fusion, correlation analysis, multivariate data analysis using generalized canonical correlation analysis (GCCA) Matlab code implementation.
-
-
1下载:
用于特征降维,特征融合,相关分析等多元数据分析的fisher鉴别分析(FLDA)Matlab代码实现。-For feature reduction, feature fusion, correlation analysis, multivariate data analysis of the fisher discriminant analysis (FLDA) Matlab code implementation.
-
-
0下载:
用于特征降维人脸识别等多元数据分析的主分量分析投影的Matlab代码实现。-For feature reduction and other multivariate data analysis, face recognition principal component analysis projection of the Matlab code implementation.
-