搜索资源列表
Basedonsampleandkerneldynamicmeans
- 基于样本和主轴核函数的相似度的动态聚类算法程序-based on samples and nuclear spindle function of the similarity dynamic clustering algorithm procedures
testPNN
- /*模式训练*/ Training(int,int,int,char*,char*,char*) 参数: 模式个数(即网络的第一隐层节点数) 模式维数(即网络的输入层节点数) 模式类别数(即网络的输出层节点数) 计算中心控制矢量时所用的变换函数核 第二隐层权值的训练算法 训练模式所在的文件名称 /*模式分类*/ Classifying(int,char*) 参数: 需要分类的模式个数 分类数据-/* Model Training*/Tr
kpca
- 使用核PcA来识别图片,图片为200张测试图片,200张训练图片,包含在在压缩文件中。-To identify the use of nuclear PcA picture, pictures, for 200 test images, 200 training images, is included in the compressed file.
KFDA
- 此实验使用核Fisher鉴别分析(KFDA)方法在ORL人脸数据库上进行人脸识别试验。ORL标准人脸库共包含40人,每人10幅共400幅BMP图像。-This experiment the use of nuclear Fisher discriminant analysis (KFDA) method on ORL face database for face recognition test. Standard ORL face database contains a total of 40
KernelPrincipalComponentAnalysis
- 用于图像识别的核主分量识别子程序,不包括分类器程序-For image recognition to identify the nuclear principal component subprogram does not include classification program
IndefiniteSVM
- 基于不定核的SVM人脸识别算法,该算法改正的传统的核对现实当中存在的不确定的问题-Face recognition based on uncertain nuclear SVM algorithm to correct the traditional check reality the problem of the existence of uncertainty. .
eval_kernel
- 各种核函数运算,包含linear kernel、 rbf 、Laplace kernel、Euclidean distance等核函数-Various nuclear function operation, including linear kernel, ' rbf' , Laplace kernel, Euclidean distance and other kernel
pok-kcd-src
- 用于脸部识别时,使用基于像素和区域的图像特征核的稀疏表示的识别算法。-When used in face recognition using image recognition algorithm based on feature pixel and regional nuclear sparse representation.
kda-1.0
- 基于KDA的人脸识别首先利用核方法将人脸图像数据集非线性映射到一个高维特征空间中,然后在高维特征空间中利用LDA进行线性特征提取-Face recognition based on first use of nuclear KDA method will face image data set nonlinear mapping to a high dimensional feature space, and then use LDA in high-dimensional feature sp
uarsgml-disk
- 核密度KDE估计程序 开发环境matlab 不错的源码 推荐一下(KDE nuclear density estimation procedure development environment of matlab source code recommend)