搜索资源列表
m
- 本程序使用帧间差分的方法实现了运动目标检测,但帧间差分法方法效果并不是很好。-This program uses the interframe difference method of moving object detection method the effect of inter-frame difference method is not very good.
FindMoving
- 由运动目标检测的两种基本方法----帧间差分法和背景差分法,借助于OpenCV技术,在Visual C++ 6.0编程环境下开发了运动目标检测系统。该系统首先对不同途径采集的视频图像序列进行相关的预处理之后,分别采用不同检测算法检测出图像序列中的变化区域,最后用形态学滤波和连通性分析对变化区域进行后处理,从而将视频图像序列中的运动目标比较可靠地检测出来。-The two basic methods of moving target detection---- inter-frame diffe
find_connected_components
- 连通域法,将帧间差分或者平均背景法得到的图像进行去除噪声处理,使其得到光滑的图像-find connected components
multitracking
- 基于OpenCV2.4.4+Visual Studio2008下的多目标跟踪代码。基于帧间差分法判断视频的背景和前景。-OpenCV2.4.4+ Visual Studio2008-based multi-target tracking code. Based on inter-frame difference method to determine the background and foreground of the video.
Frame_difference_method
- 利用帧间差分法,对视频中的相邻两帧图像进行差分处理,获取目标-using the frame differential, address the pictures and detect the object
Video-Demo
- 静态背景下背景预测法目标检测,静态背景下帧间差分法目标检测,Mean Shift方法目标跟踪方法-Background prediction target detection under static background, frame difference method for target detection under static background, Mean Shift method for target tracking method
detection
- 基于opencv的运动目标检测,运用帧间差分法对静态背景环境下的运动目标进行检测-Opencv based moving target detection, the use of inter-frame difference method for moving objects static background environment for testing
Background-difference-method
- 背景差分法是采用图像序列中的当前帧和背景参考模型比较来检测运动物体的一种方法,其性能依赖于所使用的背景建模技术。背景差分法检测运动目标速度快,检测准确,易于实现,其关键是背景图像的获取。在实际应用中,静止背景是不易直接获得的,同时,由于背景图像的动态变化,需要通过视频序列的帧间信息来估计和恢复背景,即背景重建,所以要选择性的更新背景。-Background difference method is the use of images in the sequence of the current
Inter-frame-difference-method
- 帧间差分法是一种通过对视频图像序列中相邻两帧作差分运算来获得运动目标轮廓的方法,它可以很好地适用于存在多个运动目标和摄像机移动的情况。 -Frame difference method is a sequence of video images through the adjacent two for differential operation to obtain moving object contour method, which can be well applied to the
bs_movingdetecting_1
- 实现了运动目标的检测和跟踪,使用背景差分法,帧间差分法、光流法和均值漂移的方法,能够实现很好的对运动目标的跟踪-Achieve a moving target detection and tracking, using background subtraction, inter-frame difference, optical flow method and the method of mean-shift, it is possible to achieve a good track mov