搜索资源列表
motion-tracking-system-
- 本文分析比较了传统运动目标检测的3种主要方法:背景图像差分法、时态差分法和光流法,在此基础上给出了一种背景图像预测算法,大大减少了因为背景变化而产生的目标检测误差。本文基于OpenCV设计出改进的运动目标检测与跟踪算法,实现了运动目标的跟踪,并在VC++编译环境下,利用USB摄像头作为视频采集器,通过观察实验结果可以看出,本文的运动目标检测算法能够正确地检测出视频图像中的运动目标,而且在检测性能上优于普通的自适应背景差分法。 -OpenCV-based motion tracking sys
CarStreamTest
- 可分别对视频中的四个车道的车流数目进行统计 ,采用的的基于OpenCV+VC2008编程,车车辆识别采用背景差分法和邻帧检测法-Video can be respectively on the four lane number traffic statistics, the based on OpenCV+ VC2008 programming, the car vehicle identification adopted the background difference method and
FindMoving
- 由运动目标检测的两种基本方法----帧间差分法和背景差分法,借助于OpenCV技术,在Visual C++ 6.0编程环境下开发了运动目标检测系统。该系统首先对不同途径采集的视频图像序列进行相关的预处理之后,分别采用不同检测算法检测出图像序列中的变化区域,最后用形态学滤波和连通性分析对变化区域进行后处理,从而将视频图像序列中的运动目标比较可靠地检测出来。-The two basic methods of moving target detection---- inter-frame diffe
vehicle-detection
- 基于帧间差分的方法用于检测场景中的运动车辆,采用Visual C++和OpenCV实现,程序有详细注释,并且附带测试视频,希望对大家有帮助。-The movement of vehicles based on frame difference method is used to detect scene using the Visual C++ and OpenCV realization procedures detailed notes, and come with a test video
MyVideo1.0_AutoCamshift
- 序用MFC+openCV编写。可实现自动获得一个目标选择框并进行跟踪 先用视频前几帧进行帧间差分,用cvFindContours()得到二值差分图像中最大的连通块作为camshift的初始选择框 可能有些压缩格式的视频打不开,需要安装Xvid解码器-Write sequence with MFC+openCV. Automatic target selection box and the interframe difference the first few frames before th
1GHY3249Video
- 对视频进行运动检测,基于相邻两帧帧间差分。 在相邻两帧(也可以为多帧)间计算逐象素的灰度差,并通过设置阈值来确定对应运动前景的象素,进而得到运动前景区域。-On a video motion detection, based on the two adjacent interframe difference. The gray-scale difference between the two adjacent frames (may be a multi-frame) calculating
cvcamera
- opencv 从摄像头或视频文件中读取视频,并利用背景差分法对运动物体进行检测-opencv read the video from the camera or video files, and use background subtraction method to detect moving objects
Background-subtraction
- opencv 从摄像头或视频文件中读取视频,并利用背景差分法检测出视频中的运动物体-opencv read the video from the camera or video files, and using background subtraction method to detect moving objects in video
multitracking
- 基于OpenCV2.4.4+Visual Studio2008下的多目标跟踪代码。基于帧间差分法判断视频的背景和前景。-OpenCV2.4.4+ Visual Studio2008-based multi-target tracking code. Based on inter-frame difference method to determine the background and foreground of the video.
Frame_difference_method
- 利用帧间差分法,对视频中的相邻两帧图像进行差分处理,获取目标-using the frame differential, address the pictures and detect the object
ThreeZhen
- 基于Opencv方法做的一个先利用三帧差分法检测视频中运动目标!,再利用adaboost算法检测人脸!能运行效果有待改进!-Opencv based method to do a first use of three difference method to detect moving objects in video! , Re-use adaboost algorithm to detect human face! The effect can be improved to run!
Background-difference-method
- 背景差分法是采用图像序列中的当前帧和背景参考模型比较来检测运动物体的一种方法,其性能依赖于所使用的背景建模技术。背景差分法检测运动目标速度快,检测准确,易于实现,其关键是背景图像的获取。在实际应用中,静止背景是不易直接获得的,同时,由于背景图像的动态变化,需要通过视频序列的帧间信息来估计和恢复背景,即背景重建,所以要选择性的更新背景。-Background difference method is the use of images in the sequence of the current
Inter-frame-difference-method
- 帧间差分法是一种通过对视频图像序列中相邻两帧作差分运算来获得运动目标轮廓的方法,它可以很好地适用于存在多个运动目标和摄像机移动的情况。 -Frame difference method is a sequence of video images through the adjacent two for differential operation to obtain moving object contour method, which can be well applied to the
test0
- 通过对视频进行差分,得到运动目标的轮廓,统计轮廓数量,对运动目标进行标记,opencv249环境。-Through the difference of video, get the outline of moving objects, the number of statistical contours, the moving target tag, opencv249 environment.
CameraVideo
- 对图片和视频进行处理,在opencv中对视频进行加噪去噪,以及背景差分法对它进行背景提取。-The image and video processing, opencv in the video noise denoising, and background subtraction method for background extraction.
Backgroud
- 在opencv中对视频用背景差分法对它进行背景提取。-The image and video processing, opencv in the video noise denoising, and background subtraction method for background extraction.
on_trackbar
- 网上很多opencv的帧差法资料,但是大都直接调用视频,或者调用摄像头,调用文件夹下的图片库的资料比较少,通过网上整理资料,终于利用opencv按照帧来处理图片。 使用opencv批量读取文件夹下的视频帧批量读取图片; 使用opencv批量读取图片,二帧差分法二帧差法;(There are many opencv frame difference data on the Internet, but most of them call the video directly or cal
基于视频的火焰检测
- 基于视频的火焰检测,逐帧截取视频,三帧差分法获取动态目标,通过颜色判别,以及火焰特征判别,检测并框出火焰区域。(Video based flame detection, video capture by frame by frame, three frame difference method to obtain dynamic targets, by color discrimination, and flame characteristics discrimination, detectio