搜索资源列表
数据结构好冬冬
- 哈夫曼编码译码,克鲁斯卡尔算法,魔王语言的解释,一元稀疏多项式相乘,C-Huffman encoding decoding, Kelushikaer algorithm, fiendish language interpretation, one yuan sparse polynomial multiplication, C
myheard
- 我们的一个数据结构的课程设计,计算一元稀疏距阵的计算器,即是一元多项式的相加\\相减\\相乘\\求导\\求X值\\...还有利用彩色文本形式编写的一个界面.非常的好看,使用也方便-the data structure of a curriculum design, calculation of one yuan sparse matrix of calculators, serves yuan polynomials together \\ subtract \\ multiply \\ der
excise2
- 在数据结构中实现两个一元多项式的相加、相减和相乘
MULTI
- 利用链表实现一元多项式相乘。数据结构习题之一。-List the realization of one dollar to use polynomial multiplication. Exercise one of the data structure.
Unary_polynomial
- 两个一元多项式相乘的算法,假设A(x)和B(x)为多项式,则M(x)=A(x)*B(x)其中,每一项都是一个一元多项式-Two unary polynomial multiplication algorithm, assume that A (x) and B (x) is polynomial, then M (x) = A (x)* B (x) which is a one dollar each polynomial
Cyiyuan
- 一元多项式的相加相减相乘,专业课程设计,无错误-Sum of one dollar subtraction multiplication of polynomials, professional curriculum design, error-free
Polynomial
- 利用线性表实现一个一元多项式Polynomial,能够实现一元多项式的输入和输出,相加,求导,相乘,求值等-By using the linear table to realize a unary Polynomial ,Can realize a yuan polynomial input and output, addition, derivation, multiplication, evaluated, etc
yiyuanduoxiangshi
- 要求选用线性表的一种合适的存储结构来表示一个一元多项式,并在此结构上实现一元多项式的加法,减法和乘法操作。 1.程序的输入 在设计程序的要求输入两个多项式。 2.程序的输出 输出两个多项式相加,想减,相乘的结果。-Requirements of a linear list chooses appropriate storage structure to say a unary, and on this structure realize a yuan polynomial
polynomial-multiplication
- 可以实现两个一元多项式相乘,并且能够把两个多项式及结果输出,的算法代码-Can achieve two unary polynomial multiplied, and be able to put two polynomials and the resulting output of the algorithm code
Binary-swap-left-and-right-subtrees
- 二叉树交换左右子树和一元多项式相乘 以及一些实验运行截图-Binary swap left and right subtrees, one yuan polynomial multiplication
polynModel
- 实现两个一元稀疏多项式相加运算,相减运算 和相乘运算-Achieve two one yuan sparse polynomial arithmetic, subtraction and multiplication operations
polynModel
- 实现一元稀疏多项式的如下运算:(1)两个一元稀疏多项式相加运算(2)两个一元稀疏多项式相减运算(3)两个一元稀疏多项式相乘运算-Realize one yuan sparse polynomial arithmetic as follows: (1) two one yuan sparse polynomial arithmetic (2) two one yuan sparse polynomial subtraction of (3) two one yuan sparse polynomi