搜索资源列表
nearpiont
- 最接近点对问题是求二维坐标中的点对问题,该算法是为了将平面上点集S线性分割为大小大致相等的2个子集S1和S2,我们选取一垂直线l:x=m来作为分割直线。其中m为S中各点x坐标的中位数。由此将S分割为S1={p∈S|px≤m}和S2={p∈S|px>m}。从而使S1和S2分别位于直线l的左侧和右侧,且S=S1∪S2 。由于m是S中各点x坐标值的中位数,因此S1和S2中的点数大致相等。 递归地在S1和S2上解最接近点对问题,我们分别得到S1和S2中的最小距离δ1和δ2。现设δ=min(δ
Algorithm
- 本文章首先简要介绍了一维与二维情况下的最接近点对问题与所涉及到的解决算法.然后,把最接近点对问题延伸至三维,提出了自己的解决思想,并提供了相关伪代码,以供参考.请各位朋友多提建议!