搜索资源列表
三弯矩插值
- 三弯矩插值法 lagrange多项式插值 多项式最小二乘法 龙贝格积分法 分段线性插值 三转角插值 这些是数值分析中常用的集中经典方法,运用matlab展示出来!-three polynomial interpolation Hangzhou least squares polynomial interpolation Romberg integration subparagraph Line sex angle interpolation three interpola
三转角插值
- 三弯矩插值法 lagrange多项式插值 多项式最小二乘法 龙贝格积分法 分段线性插值 三转角插值 这些是数值分析中常用的集中经典方法,运用matlab展示出来!-three polynomial interpolation Hangzhou least squares polynomial interpolation Romberg integration subparagraph Line sex angle interpolation three interpola
lagrange多项式插值
- 三弯矩插值法 lagrange多项式插值 多项式最小二乘法 龙贝格积分法 分段线性插值 三转角插值 这些是数值分析中常用的集中经典方法,运用matlab展示出来!-three polynomial interpolation Hangzhou least squares polynomial interpolation Romberg integration subparagraph Line sex angle interpolation three interpola
插值多项式
- 用c++编写的关于多项式插值的算法-used for the preparation of the polynomial interpolation algorithm
main
- 分段线性插值,分段二次多项式插值,分段三次多项式插值,三次样条插值-Piecewise linear interpolation, sub-quadratic polynomial interpolation, sub-cubic polynomial interpolation, cubic spline interpolation
InterpolationAndFitting
- 插值与拟合的一些经典算法,包含多项式插值和二维插值,以及一些数学建模实例-some classic algorithms interpolation and fitting, including polynomial interpolation and two-dimensional interpolation, as well as some examples of mathematical modeling
analysis2
- 数值分析B计算实习作业二:分别用分段线性插值、分段二次多项式插值、 分段三次多项式插值和三次样条插值对所给的数据进行细化 -Numerical Analysis of B calculated internship operation II: piecewise linear interpolation, respectively, sub-quadratic polynomial interpolation, sub-cubic polynomial interpolation and
doolittle
- 1.n个节点分段Lagrange插值多项式; 2.使用格式y=lagrange(x0,y0,x,k); 3.输入项x0为n维插值节点向量,y0为n维被插函数值向量; 4.x为m维插值点向量,k为分段插值多项式次数,不超过3,缺省为k=1; 5.输出y为插值点x处的函数值;- 1.n a sub-node Lagrange interpolation polynomial 2. The use of the format y = lagrange (x0, y0,
chazhi
- Language 求已知数据点的拉格朗日插值多项式 Atken 求已知数据点的艾特肯插值多项式 Newton 求已知数据点的均差形式的牛顿插值多项式 Newtonforward 求已知数据点的前向牛顿差分插值多项式 Newtonback 求已知数据点的后向牛顿差分插值多项式 Gauss 求已知数据点的高斯插值多项式 Hermite 求已知数据点的埃尔米特插值多项式 SubHermite 求已知数据点的分段三次埃尔米特插值多项式及其插值点处的值 SecSampl
programs
- 最小二乘法 拉格朗日插值法 多项式插值等子程序-Least squares polynomial interpolation, Lagrange interpolation subroutine
shuzhijisuan
- 里面有用MATLAB自编的几个数值计算方面的几个程序,有拉格朗日多项式插值法,高斯消去法求解方程组,最小二乘法拟合,复合梯形公式求解数值积分-Some Useful MATLAB self inside the numerical calculation of the number of procedures, Lagrange polynomial interpolation method, Gaussian elimination method for solving equations,
matlab插值与数据拟合
- 使用matlab的插值与数据拟合,含有插值原理,方程,插值方法有:拉格朗日多项式插值,分段线性插值,三次样条插值,最小二乘法,有多个实例(有源码、语句、结果、图像等)
插值runge现象
- 针对高次插值runge的学习代码,比较段数N不同时分段线性插值和三次样条插值,均给出误差曲线。(In view of the learning code of high order interpolation Runge, the number of comparison segments N does not simultaneously piecewise linear interpolation and three cubic spline interpolation, and the e
拉格朗日插值+MATLAB源程序代码
- 拉格朗日插值法可以找到一个多项式,其恰好在各个观测的点取到观测到的值。数学上来说,拉格朗日插值法可以给出一个恰好穿过二维平面上若干个已知点的多项式函数。(The Lagrange interpolation method can find a polynomial that happens to be taken to the observed value at the point of each observation. Mathematically, the Lagrange interpo
插值与拟合
- matlab经典算法的程序\插值与拟合 包括多项式的拟合,多项式的插值,有经典算例(The program of the classical matlab algorithm -- interpolation and fitting)
Language
- 程序实现线性插值、抛物插值、牛顿多项式插值、等距节点插值、最小二乘法的曲线拟合对函数进行近似(The function is approximated by linear interpolation, parabolic interpolation, Newton polynomial interpolation, equidistant node interpolation, and least square curve fitting.)
47206
- 多项式插值求解 案例 希望有所帮助 , 自带案列 和图(The program should include a function generalInterpolation(fs,xs) that finds the interpolating polynomial including in cases where there are repeated points (inlcuding Hermite interpolation, where the points are doubled,
牛顿插值法
- 利用牛顿插值法获取多项式系数,同时绘制插值函数和原函数对比图(Obtaining polynomial coefficients by Newton interpolation method and draw the comparison diagram of the interpolation function and the original function at the same time)
五次多项式插值
- matlab五次多项式插值曲线拟合代码,速度与加速度都是平滑的,比三次多项式好。
样条插值
- 样条插值的研究背景,样条函数的力学意义,三次样条插值多项式的构造,一般的插值问题(Research background of spline interpolation, mechanical meaning of spline function, construction of cubic spline interpolation polynomials, general interpolation problems)