搜索资源列表
ridgeregresssvm
- 最小二乘支持向量机岭回归函数,可以进行预测和分类-least squares support vector machine regression function Ridge, forecasts and classification
denoise_kpca
- 最小二乘支持向量机岭回归函数,可以进行预测和分类-least squares support vector machine regression function Ridge, forecasts and classification
regrRR
- Ridge Regression RR 岭回归估计,是非常有用的非线性时间序列算法,在局部多项式预测中非常有用。
regression_copy
- 岭回归程序 输入参数为自变量、因变量和优化因子 输出参数为映射矩阵与回归误差-Ridge Regression. Input parameters: - X: Input data block (k x n) - Y: Output data block (k x m) - q: Stabiliaztion factor (optional) If not given, estimated from data Return parameters: - F
ridge
- 应用回归分析中岭回归的matlab程序代码-RIDGE REGRESSION
Redge-regression
- 岭回归的matla源程序,主要用于解决无法求逆或需要更好的解时所用的-Ridge regression matla source, mainly used to solve the inverse can not be a better solution or need to use when
RIDGE-REGRESSION
- FORTRAN语言程序。这是进行数理统计上岭回归的计算机程序,很好用的。 -THIS IS A PROGRAM OF RIDGE REGRESSION PROGRAM.
SAS6_11linghuiguichengxujishili
- sas学习材料,有关岭回归的程序设计及实例分析,非常详细-sas learning materials, the ridge regression analysis program design and examples, very detailed
Fridge-regress
- 岭回归分析(Ridge regression)是一种专用于共线性数据分析的有偏估计回归方法,这套源码是对ridge regression算法的一种实现,附有测试实例-Ridge regression (Ridge regression) is a special collinearity data analysis unbiased estimate of the regression method, this set of source code is an implementation of
PLS-RidgeRegression
- 当数据维数相对较高时,普通的最小二乘方法存在计算问题,该文件给出了两种解决方法:PLS和岭回归方法,并可以看出二者效果差异-When the data dimension is relatively high, the ordinary least squares method of calculation problem exists, the document gives two solutions: PLS and ridge regression methods, and results
ridge_regression_matlab
- 岭回归拟合数据,其中hw3_1_ridge.m使用的是岭回归的方法,hw3_1_MLE.m使用的是极大似然的方法。-fitting data with ridge regression using matlab
regression
- 机器学习算法,预测数值型回归,岭回归和逐步线性回归-Machine learning algorithms to predict numerical regression, ridge regression and stepwise linear regression
Ridge_Regression_code
- matlab实现岭回归,并在实际例子中体现了他的用法。-Matlab ridge regression, and reflected his usage in the practical example.
RR
- 岭回归,fortran语言编写,回归计算中的一种-Ridge regression, fortran language
LEAST-SQUARE-BASED-svd
- 基于l1,l2 NORM 的最小二乘法,岭回归等算法,懂的人一看就知道好用,利用SVD进行计算的-Based on L2, NORM L1 least square method, ridge regression and other algorithms, the people who understand the good use, the use of SVD for calculation
ridge
- 这段代码可以实现机器学习中的岭回归。自行添加高斯噪声后对每个数据集的七阶多项式用不同的值λ进行岭回归-Perform ridge regression on each dataset with 7th order polynomial with different value λ.Add Gaussian noise.
ridge
- 岭回归模型,非MATLAB工具箱中的。效果还不错。-ridge regression
lasso
- 线性回归里的最小二乘估计,以及应用坐标下降的岭回归和Lasso的回归的python实现(Ridge regression and Lasso regression)
KRR
- 核岭回归算法 输入数据集(需要分开存放训练集和测试集) 利用4重交叉验证法调参 最后输出分类准确率(Kernel ridge regression algorithm Input data set (training set and test set need to be stored separately) Parameter adjustment by 4-fold cross validation Final output classification accuracy)
AdaBoost
- adaboost 集成多个回归算法(线性回归、岭回归、LASSO等)(Adaboost integrates multiple regression algorithms)