搜索资源列表
FdWaveModel
- 双相介质的交错网格有限差分波场模拟与AVO属性分析程序,包含了不同精度的交错网格程序,特征值分析法边界吸收条件,双相介质的弹性参数计算程序,以及AVO属性计算分析程序-Two-phase media of the staggered-grid finite-difference wave field simulation and AVO attribute analysis program, including the different precision staggered grid pro
1DFD_DVS
- 利用位移-速度-应力交错网格有限差分方法进行一维粘弹性介质地震波场生成和模拟,对于做波场模拟的同学有很好的参考价值,更详细的介绍见英文描述。-The Fortran95 Computer Code for Finite-Difference Numerical Generation and Simulation of a 1D Seismic Wavefield in a 1D Heterogeneous Viscoelastic Medium Using the Displacement-Ve
AnalyticAnelastic
- 二维粘弹性介质中波的传播的解析形式。应用Carcione等在1988年发表的《WAVE PROPAGATION SIMULATION IN A LINEAR VISCOELASTIC MEDIUM》一文中的方法,更加详细的介绍见英文描述。该代码对于做波场模拟的同学有很好的参考价值。- MATLABscr ipt for obtaning the analytical solution for 2D wave propagation in a viscoelastic medium, based
EX2DELEL_BergaIf
- 在压缩源的激发下,声学-弹性或者弹性-弹性表面的二维精确响应,对于做波场模拟的同学很有参考价值。-THIS FORTRAN PROGRAM CALCULATES THE EXACT SEISMIC 2D RESPONSE IN AN ELASTIC HALFSPACE WITH A COMPRESSIONAL POINT SOURCE AND AN INTERFACE TO AN ELASTIC HALFSPACE. ALL GREEN S FUNCTIONS ARE CALCU
EX2DVAEL_BergaIf
- 在压缩源激发下,真空-弹性表面的精确二维响应。(Garvin问题) 英文描述中有相关参考文献,对于做波场模拟的同学很有用。-THIS FORTRAN PROGRAM CALCULATES THE EXACT SEISMIC 2D RESPONSE FROM A COMPRESSIONAL POINT SOURCE IN AN ELASTIC HALFSPACE WITH A FREE SURFACE. ALL GREEN S FUNCTIONS ARE CALCULATED AN
modeling_anelastic
- 粘弹性介质中面波正演模拟,基于变网格函数伪谱法模拟,模拟精度高-The viscoelastic medium surface waves forward modeling, based on a function of the variable-grid pseudospectral method simulation, simulation accuracy
tandong
- 弹性动力学P波在自由界面上的反射和在介质界面上的反射以及透射后的位移振幅比以及成像-Elastodynamics P wave is reflected on the free interface and the media interface on the reflection and transmission of displacement after the amplitude ratio and an imaging
Example
- 二为弹性波动程序,用于显示p波,s波和表面波的传播过程。-Elastic Wave Program
MATLAB
- 本章先分析说明伪谱法求解波动方程的算法原理,再给出弹性波场伪谱法数值模拟的改进算法;然后,通过直接引入P波波场变量和S波波场变量,给出可实现弹性波场的P波和S波分解的波动方程,并用伪谱法实现弹性波场的P波和S波分解的数值模拟;最后用伪谱法对井间地震的复杂波场作数值模拟,分析井间地震波场中各种波的传播规律。(In this chapter, the principle of pseudo-spectral method for solving wave equation is analyzed,