搜索资源列表
libsvm-3.1
- SVM是一种常用的模式分类机器学习算法,以效率高准确度高闻名于世,libsvm和svmlight是常用的两种SVM实现方法。 这个是台湾林智仁写的,有各种语言版本-SVM is a common pattern classification machine learning algorithm, known to high accuracy, high efficiency, libsvm and svmlight are two commonly used SVM implementation
IrisDC06
- 分类是数据挖掘 、机器学习 和模式识别 中一个重要的研究领域。分类的目的是学会一个分类模型 (称作分类器),该模型能把未知类别的数据项映射到给定类别中。目前发展较成熟的几种分类算法 如决策树、神经网络、贝叶斯方法、遗传算法等。分类具有广泛的应用,例如医学诊断、信用卡系统的信用分级、图像模式识别等。本毕业设计通过使用鸢尾属植物(IRIS)数据集,对当前数据挖掘中具有代表性的优秀分类算法进行分析和比较,总结出了各种算法的特性,为使用者选择算法或研究者改进算法提供了依据。-Classificatio
A-tutorial-on-spectral-clustering
- 机器学习的各种算法,与实现 如谱分析 ,随机森林,分类器,线性分类器-machine learning and artifical intelligence spectrum anysis ramdom forest and linear classification
machine language learning(1)
- 机器学习实战中 各种常见算法 分类 回归 无监督学习 包括源代码的数据库(A variety of common algorithm classification regression unsupervised learning including source code database in machine learning)
python_self
- 实现了机器学习的各种分类算法,如:knn,svm,朴素贝叶斯,神经网络,决策树等。(Various classification algorithms of machine learning, KNN, SVM, naive bayes, neural network, decision tree, etc.)