搜索资源列表
deepnet-master
- Nitish Srivastava University of Toronto.利用GPU训练深度学习算法-Implementation of some deep learning algorithms. Nitish Srivastava University of Toronto. GPU-based python implementation of 1. Feed-forward Neural Nets 2. Restricted Boltzmann Machines
arofile-persistence
- SPIHT算法VC实现,涉及5-3整数小波变换提升算法实现,()
322636
- 2 3了FEC 编码 译码的一种算法,能纠正一位错误()
chatbot
- 聊天机器人 原理: 严谨的说叫 ”基于深度学习的开放域生成对话模型“,框架为Keras(Tensorflow的高层包装),方案为主流的RNN(循环神经网络)的变种LSTM(长短期记忆网络)+seq2seq(序列到序列模型),外加算法Attention Mechanism(注意力机制),分词工具为jieba,UI为Tkinter,基于”青云“语料(10万+闲聊对话)训练。 运行环境:python3.6以上,Tensorflow,pandas,numpy,jieba。(Chat Robot
CNN
- 卷积神经网络分类 调制信号识别 卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习(deep learning)的代表算法之一 [1-2] 。卷积神经网络具有表征学习(representation learning)能力,能够按其阶层结构对输入信息进行平移不变分类(shift-invariant classification),因此也被称