搜索资源列表
runica
- 提出了一种利用S函数实验结果表明:ICA可以将 脑电信号中包含的心电(ECG)、眼电(EOG)等多种干扰信号成功地分离出来-use of a S-function experimental results show : ICA EEG can be included in the heart (ECG), eyes (EOG) and other interference signal successfully separated
BSS
- 盲源分离算法的几篇文章应用 【基于独立分量分析的脑电中眼电伪迹消除】【基于负熵和智能优化的盲源分离方法】【基于小波消噪和盲源分离的信号奇异点检测方法】-Blind source separation algorithm applied 【several articles based on independent component analysis of EEG ocular artifact】 【intelligent optimization based on negative entr
ica
- fastica算法,去除眼电,实现对脑电的去噪处理-fastica algorithm to remove the EOG
EEG-LMS
- 可以去除脑电中的50Hz工频干扰,同时可以剔除部分生理伪迹,如眼电、肌电伪迹。- can be removed the 50Hz frequency interference of EEG, and can eliminate part of the physiological artifacts such as EOG, EMG.
ADJUST
- eeglab中使用ICA算法后的自动伪迹识别插件adjust,可以自动识别独立成分的伪迹成分,可用于去除眼电、心电等伪迹,解压后安装在eeglab/plugins文件夹中即可在eeglab-tools中调用(independent component analysis algorithm)
preprocess
- 对脑电信号进行预处理,伪迹移除,去除眼电,肌电,眼动等伪迹(The EEG is pretreated and artifacts removed)