搜索资源列表
infrared-spectroscopy-to-predict
- 有导师学习神经网络的回归拟合——基于近红外光谱的汽油辛烷值预测-Supervised learning neural network regression- based on the gasoline octane number of the near-infrared spectroscopy to predict
nnrf
- 学习神经网络的回归拟合,举例:基于近红外光谱的汽油辛烷值预测-Learning neural network regression fit, for example: gasoline octane number prediction based on near-infrared spectroscopy
neural-network-fit
- 有导师学习神经网络的回归拟合——基于近红外光谱的汽油辛烷值预测-Learning from regression neural network fit- based on near-infrared spectroscopy to predict gasoline octane
BP-Model-of-NIR
- 近红外光谱分析中的BP模型建立过程,其中在原有BP神经网络模型的基础上自己编程加入了近红外模型验证系数的计算,如R-SquareC.R-SquareP,RMSEC,RMSEP,RSD等。并加入循环语句,设定区间程序可以自动运行并判断最佳隐含层结点数,最佳学习速率,动量因子,训练次数等,同时加入一个验证校正模型实例。-The process of BP model in near infrared spectrum analysis, including the original BP neura
main
- 有导师学习神经网络的回归拟合——基于近红外光谱的汽油辛烷值预测-Supervised learning neural network regression fit- based on Near Infrared Spectroscopy Gasoline Octane forecast
PCAPMAPPLSPBP
- 这是一种基于近红外光谱的非线性建模方法及系统,从各所述近红外光谱数据随机挑出一部分作为校正集,挑出一部分作为验证集;将所述校正集和所述验证集通过主成分分析得到光谱特征空间;在所述光谱特征空间中,通过马氏距离法选取所述校正集里与所述验证集的各个样本最近似的样本作为校正子集;从所述校正子集中提取主成分数,作为BP神经网络的输入层建立回归模型,不仅能解决各因素之间多重相关的问题,还避免了大量的噪声和一些无用的信息,降低了变量维数,在BP神经网络的非线性映射能力和适应学习能力的基础上,提高了模型的预测稳
shenjingwangluo
- 基于有导师学习神经网络对近红外光谱的汽油辛烷值预测拟合-Based on supervised learning neural network on Near Infrared Spectroscopy Gasoline Octane forecast Fitting
chapter30
- matlab实现极限学习机的回归拟合及分类——对比实验研究,例子是回归拟合——基于近红外光谱的汽油辛烷值预测-Regression Fitting and Classification of Limit Learning Machines- Comparative Experimental Study, Example of Regression Fitting- Prediction of Gasoline Octane Number Based on Near Infrared Spectr
ELM代码
- 为了评价ELM的性能,试分别将ELM应用于基于近红外光谱的汽油辛烷值测定和鸢尾花种类识别两个问题中,并将其结果与传统前馈网络(BP、RBF、PNN、GRNN等)的性能和运行速度进行比较,并探讨隐含层神经元个数对ELM性能的影响。(n order to evaluate the performance of ELM, test the application of ELM in the near infrared spectroscopy based on the determination of
ELM预测
- 给出了一种极限学习机(elm)算法,并用汽油近红外光谱辛烷值数据集对ELM网络进行训练,最后用ELM对汽油辛烷值进行预测,并对预测结果进行评价。文件内含ELM工具箱,可直接在MATLAB运行。(An extreme learning machine (elm) algorithm is presented, and the ELM network is trained with the data set of gasoline near infrared spectroscopy octane