搜索资源列表
FFT
- 用与语音信号处理中的预处理中MATLAB原代码
filter
- 本文分析了语音数字信号的采集来源以及其预处理。通过实例,利用Matlab对语音信号进行时频变换与分析,同时构造一个固定频率的干扰信号,对两个信号进行合成,设计数字滤波器,实现对语音信号的F IR、IIR滤波处理,最后在时域和频域中对信号进行分析比较。-This paper analyzes the sources of voice digital signal acquisition and its pretreatment. By example, voice signals using Ma
meierdaopufadematlabshixian
- 对录音信号集 中的某一语音,利用BATLAB设计一美尔例谱算法,并实现。 取信号集 中的一个语音信号:“xxxxxx”,将它作为输入的语音信号来为设计一个美尔倒谱算法,在该算法中,主要设计了以下环节: 1.读入一个语音信号;2.对这个信号归一化;3.对归一化的信号进行加窗处理(这里的矩形窗长度必须为257,重帧长64);4.进行预加重处理,即通过一个高通滤波器: ;5进行512点的FFT;6.分别取模平方得到功率谱;7.在设计的mel滤波器组中,我采用了25个带通滤波器;8.将得到的功率
pre
- 语音信号预处理方法,希望对各位有所帮助,欢饮查看!-Voice pretreatment
window-framing-matlab-program
- 语音信号处理预加重加窗分帧matlab程序-Speech signal processing pre-emphasis window framing matlab program
yujiazhong
- 对语音信号进行分析时需要先进行预加重处理,起到提升高频的作用。-The speech signal analysis needs to first conduct a pre-emphasis process, to enhance the role of high frequency.
yuyinjiazhongFFT
- 语音信号处理来的预加重随后进行FFT变换,同时呈现结果图。-Speech signal processing preemphasis subsequent FFT, simultaneous presentation of the results in Fig.
Intelligent-PMATLAB-speech-signal
- 智能仪器课程设计, 利用MATLAB实现了语音识别功能,给出了详尽的matlab程序。具体步骤为对语音信号进行预处理,特征参数提取,以及模型训练,匹配算法,最后输出识别结果。-Intelligent Instrument curriculum design, using MATLAB realize the voice recognition function, gives a detailed matlab program. Specific steps for the speech sign
Speech-signal-classification-
- 语音特征信号识别是语音识别研究领域中的一个重要方面,一般采用模式匹配的原理解 决。语音识别的运算过程为:首先,待识别语音转化为电信号后输入识别系统,经过预处理后用数学方法提取语音特征信号,提取出的语音特征信号可以看成该段语音的模式。然后将该段语音模型同已知参考模式相比较,获得最佳匹配的参考模式为该段语音的识别结果.-Speech characteristic signal recognition is an important aspect in the field of speech re
classification-of-Speech-signal-
- 语音特征信号识别是语音识别研究领域中的一个重要方面,一般采用模式匹配的原理解 决。语音识别的运算过程为:首先,待识别语音转化为电信号后输入识别系统,经过预处理后用数学方法提取语音特征信号,提取出的语音特征信号可以看成该段语音的模式。然后将该段语音模型同已知参考模式相比较,获得最佳匹配的参考模式为该段语音的识别结果-Recognition is the speech characteristic signal in the field of speech recognition is an i
yuyinchuli
- 通过matalb实现语音信号的处理,完成预加重、加窗函数、端点检测及生成处理后语音样本-Achieved by processing the speech signal matalb, complete the pre-emphasis, windowing function, voice activity detection and generation after sample processing
Speech-signal-pre-processing
- 语音信号预处理,频谱分析,滤波,预加重及端点检测-Speech signal pre-processing, spectral analysis, filtering, pre-emphasis and endpoint detection
vq-Speakerrecognized
- vq矢量量化,对说话人进行识别,内置有语音样本,识别率高达90 。对语音信号进行读取,预处理,特征参数提取,向量量,训练,对比识别。-vq vector quantization for speaker identification, built-in voice samples, the recognition rate of 90 . Read the speech signal, preprocessing, feature extraction, the amount of vector
Voice-signal-pre-processing
- 语音识别前期处理代码,包括语音信号预处理,预加重,加窗分帧,短时能量及短时平均幅度分析,短时平均过零率,短时自相关分析,短时平均幅度差函数。-Speech recognition pre-processing code, including voice signal pre-processing, pre-emphasis, windowing sub-frame, and the short-term average short-term energy analysis, the averag
voice-recognition
- 3、语音特征提取与分类 首先, 待识别语音转化为电信号后输入识别系统, 经过预处理后用数学方法提取语音特征信号, 提取出的语音特征信号可以看成该段语音的模式。-3, the voice feature extraction and classification First, to be recognized voice into electrical signals input recognition system, after pretreatment with a mathematica
Noisy-pretreatment
- 纯语音和带噪语音,信噪比,带噪语音的产生,语音信号的预处理一——消除趋势项和直流分量-Pretreatment with a pure voice and noisy speech signal to noise ratio, resulting in noisy speech, the speech signal- to eliminate the trend term and DC components
HMM_VoiceRecognation
- 通过基于HMM的语音识别系统的基本结构,详细介绍了语音信号采集、预处理、MFCC特征参数提取、HMM训练和HMM识别等主要模块的基本原理 并针对实际应用中HMM存在的模型初始化和数据溢出等问题进行分析,引入了一些能提高系统性能的相应措施。-By the basic structure of HMM-based speech recognition system, details the basic principles of audio signal acquisition, preproces
a3
- 语音信号的分析及前期的预处理,包括语音信号的一些特征;预处理包括前期的预滤波、小波降噪、预加重、加窗分帧、语音端点检测。-Speech signal analysis and pre processing, including some of the features of the speech signal preprocessing including pre filtering, wavelet noise reduction, pre emphasis, plus window fram
NONOISE
- 语音信号的预处理——去噪处理的matlab程序代码。-De-noising of speech signals
YCL
- 对信号进行梅尔倒谱系数特征采集之前的预处理,包括分帧加窗、基于短时能量的双门限判别、除噪、预加重等(The preprocessing of Mel cepstrum coefficients before the signal is carried out, including frame windowing, double threshold discrimination based on short-time energy, denoising and pre emphasis)