搜索资源列表
gkdj
- 以为高斯和密度估计,使用高斯核的非参数密度估计方法,对样本进行概率密度估计,程序中给出了窗宽的估算公式。-That the Gaussian and density estimation, using Gaussian kernel non-parametric density estimation method, the sample probability density estimates, the program gives the formula for bandwidth estim
mainKDEprogramLINEAR
- 核密度估计,用于识别和核密度计算,采用高斯插样。-kernel density evalue.it is used for statistical pattern recognition.
KDE
- 对6个样本点,进行直方图估计核高斯核密度估计-for 6 sample points, histogram estimation and Gauss kernel density estimation
Motian_tracing
- 基于高斯核密度函数的运动目标检测程序。参考文章是background and foreground Modeling Using kernel density Estimation for visual surveilence-This programe used in moving object detection, the programe refer to article background and foreground Modeling Using kernel density Est
HMDQW
- 用于计算非参数核密度的高斯核密度概率分布函数的期望值(Expected values of the Gauss kernel density probability distribution function for nonparametric kernel density calculations)
kde
- 给定样本点,采用高斯核密度估计,求出概率密度分布函数。(It is good to use this method to evaluate pdf)
CY20180228
- 利用最大熵法求解正态分布的解析解,以及利用高斯核函数计算概率密度(Obtain PDF by maximum entropy and a gaussian kernel function)
kde2d
- 高斯核密度算法,短时傅里叶变化,计算高斯核函数的权重(Gauss kernel density algorithm, short time Fourier change, calculation of the weight of Gauss kernel function)