搜索资源列表
BGM
- 本文提出了一种静止摄像机条件下的运动目标检测与跟踪算法。 它以一种改进的自适应 混合高斯模型为背景更新方法,用连通区检测算法分割出前景目标,以 Kalman滤波为运动模型实现对运动目标的连续跟踪。在目标跟踪时,该算法针对目标遮挡引起的各种可能情况.
混合高斯模型
- 经典混合高斯模型,运动目标检测
mixture_of_gaussians
- 这个程序是基于混合高斯背景模型的运动目标检测算法,m文件和所用视频放到matlab的工作目录下即可运行-This program is based on the Gaussian mixture background model of moving target detection algorithm, m, and used video files into matlab working directory to run
hunhegaosi
- 针对智能交通系统中运动目标检测阶段存在的不足,提出了一种基于自适应混合高斯模型(GMM)的改进算法。-For the deficiencies of the intelligent transportation system moving target detection stage, an improved algorithm based on adaptive Gaussian mixture model (GMM).
abc
- 基于混合高斯模型背景建模法来检测运动目标-Gaussian mixture model-based background modeling method to detect moving targets
Q
- 本文以室内、外不同空间的人数统计为背景,研究基于图像的人员计数技术,对某时段内进出摄像机视野中指定区域的人数,或指定区域内在景人数进行统计。主要研究内容有以下几点: (1)人员计数方案论证:本文分析对比了不同人员计数算法,研究分析了基于像素、 基于Hough变换的人员计数算法的优缺点。 (2)基于像素统计的人员计数系统实现:①分别采用近似中值背景模型和高斯混合背景模型提取前景图像;②采用基于HSV颜色空间变换的方法对前景中的阴影进行抑制;③用前景像素数除以人数得到一个人的像素平均值,
matlab_gmm
- 针对单高斯建模的不足,提出高斯混合背景模型,可以检测出比较清楚的运动目标,经实验对比,噪声较少