搜索资源列表
[codes]LeNet-5
- 是matlab的代码,关于yann Lecun在89年提出的cnn的原型,这个代码成功应用于欧洲很多国家的手写支票识别-Is matlab code on cnn yann Lecun prototype made in 1989, this code successfully applied to handwriting recognition check many European countries
CNN
- 用 卷积神经网络进行手写字符 识别,内含mnist训练集-Handwritten character recognition, containing mnist convolution neural network training set
cnn
- CNN网络关于手写数字识别的全套程序,可以自行调节迭代参数,得到自己想要的结果。-The simulation about the CNN experiment in Matlab.
CNN
- 这个代码主要是研究手写数字的识别效率,用卷积神经网络算法来实现,用的是官方手写字体数据,能够显现百分之九十以上的识别率。-Used for convolution neural networks to identify handwritten numbers
CNN
- CNN learning 手写数字识别 神经网络-CNN learning handwritten numeral recognition neural network
code&doc
- 基础的卷积神经网络代码,实现mnist手写字符识别,含中文文档说明(Basic CNN code, including detailed annotation in Chinese)
数字识别
- python的keras调用theano创建cnn识别minist手写数字(use keras of python to create cnn to recognize digit wrote by hand)
CNN手写识别
- 基于Matlab的,用于识别手写的图片里面的内容(Based on Matlab, used to identify the contents of a handwritten picture)
cnn
- matlab卷积神经网络cnn,用于手写字体识别或者其他都可以(matlab cnn For handwritten font recognition or anything else)
my_cnn.tar
- 用卷积神经网络实现手写数字识别,数据集为mnist数据集(Convolution neural network is used to realize handwritten numeral recognition. Data set is MNIST data set.)
mnist
- 利用keras实现手写数字识别,使用CNN模型 全连接层+两个卷积层,最后Softmax分类器,识别率超过96%(Using keras to realize handwritten numeral recognition baesd on CNN model. One whole connection layer + two convolution layers, and a Softmax classifier. The recognition accuracy is over 96%
cnn
- vs的cnn程序,没有调用任何库。有两个卷积层,用minst手写库识别(Vs's CNN program, no library is called. There are two coiling layers that are identified by a MINST handwritten Library)
MNIST_CNN 代码及测试结果
- 只含一层卷积层的CNN也可以将手写数字识别的正确率达到99%(The CNN with only one convolutional layer can also get the correct rate of handwritten digit recognition up to 99%.)
simpleCNN
- 在anaconda+opencv+tensorflow平台下,利用简单的CNN卷积神经网络进行手写字符识别(Under the anaconda+opencv+tensorflow platform, we use simple CNN convolution neural network to handwritten character recognition.)
张哲_017034910051_03
- 基于tensorflow的手写数字识别,MLP和CNN对比(the compare between MLP and CNN in Handwriting recognition.)
Tensorflow CNN
- 卷积神经网络识别手写数字,放在jupyter直接跑,99%识别率,已经和Tensorboard联通好了(Convolutional neural network recognizes handwritten numerals and runs directly on jupyter. The recognition rate is 99%. It has been connected with Tensorboard.)
CNN
- 手写数字识别的数据集 matlab实现cnn(Data Set for Handwritten Number Recognition Realization of CNN in matlab)
深度学习CNN手写数字识别
- 利用CNN网络手写数字识别,注释清楚,损失函数用的是focalloss,标注明确,可以跑通,框架是pytorch